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a b s t r a c t 

Background: The primary aim of this study is to determine whether sinus proximity increases or decreases 

molar tipping under the force of expansion; a secondary aim is to compare the effect of the initial buccal 

inclination, alveolar bone loss, and sinus proximity to molar movement under expansion force, by assess- 

ing the stress distribution of the periodontal ligament and the changes in the moment/force (M/F) ratio). 

Methods: Twenty different 3-dimensional models were created by changing the buccal inclination 

(0 °,5 °,10 °,15 °, and 20 °) value of maxillary molar and simulating different amounts of alveolar bone loss 

(0, 2,4, and 6 mm) in the basic model. Additionally, an artificial sinus was added to the basic model, and 

the penetration of the roots into the sinus to different levels (2, 4, and 6 mm) was simulated separately. 

Thus, 9 additional models were created. The M/F ratio, location of the center of resistance, and princi- 

pal stresses on the periodontal ligament were analyzed for each of the 29 models separately in a finite 

element analysis. 

Results: The M/F ratio increased as initial buccal inclination or bone loss increased. As the amount of 

simultaneous penetration of 3 roots into the sinus increased, the M/F ratio decreased. Incremental changes 

of both the initial inclination value and the amount of bone loss resulted in higher maximum compressive 

stress on the apices of the buccal roots. 

Conclusions: Increases in alveolar bone loss and buccal inclination caused increases in the periodontal 

stress. Penetration of the roots into the sinus provides bicortical anchorage and could prevent unwanted 

crown tipping. 

© 2021 World Federation of Orthodontists. Published by Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

When orthodontic force is loaded on a tooth, various levels of

stress-strain distribution occur in the periodontal ligament (PDL)

and surrounding alveolar bone. This allows the tooth to be dis-

placed in the alveolar bone. The amount and type of displacement
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can be affected by various parameters, such as the size and shape

of the tooth, the PDL thickness, adjacent anatomical structures, ini-

tial buccolingual inclination, and the alveolar bone level [1] , be-

cause these factors cause changes in the moment/force (M/F) ratio.

As a result, even if the direction and magnitude of forces are con-

stant, the displacement behavior of tooth varies. 

The maxillary first molar is subjected to severe orthodontic

force in the transverse direction via the banded rapid maxilla ex-

pansion device or hybrid hyrax device [ 2 , 3 ]. Similarly, a certain

amount of force is applied to the molar with devices such as

the trans palatal arch or quad helix, even though the force is not

as great as in rapid expansion [ 4 , 5 ]. Buccal crown tipping of the

tooth occurs during the transverse movement of the maxillary mo-

lar, causing extrusion of the palatal cusps [6] . However, with the

changes in the M/F ratio, a more controlled movement of the tooth

can be achieved. In other words, extrusion of the palatal cusps can

be minimized [7] . 
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https://doi.org/10.1016/j.ejwf.2021.12.001
http://www.ScienceDirect.com
http://www.ejwf.org
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejwf.2021.12.001&domain=pdf
mailto:dt.hasan@hotmail.com
https://doi.org/10.1016/j.ejwf.2021.12.001


H. Camcı and F. Salmanpour / Journal of the World Federation of Orthodontists 11 (2022) 60–67 61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Material properties levels 

Material Young’s modulus (MPa) Poisson’s ratio 

Periodontal ligament 0.05 0.49 

Cortical bone 2000 0.30 

Cancellous bone 200 0.30 

Teeth 20,000 0.30 

Bracket 200,000 0.30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

determine Cres localization. The distance between the second force 
Several studies have investigated the effect of different levels of

alveolar bone loss on the stress distribution on the PDL and the

pattern of tooth movement. But in these studies, the molar was

simulated to be in the upright position [ 8 , 9 ], whereas the maxil-

lary first molars are typically buccally inclined toward the occlusal

plane. Buccal crown tipping may occur as a compensatory mecha-

nism for maxillary transverse deficiency or as a result of alveolar

bone loss, especially in adult patients [ 10 , 11 ]. Different initial incli-

nation values may cause different patterns of movement under the

same force. Therefore, a minimum moment is delivered for each

unit of force, to achieve less buccal tipping during maxillary expan-

sion in a patient with an increased initial inclination or horizontal

bone loss. Both the alveolar bone loss and the degree of initial in-

clination affect the distribution of stress-strain in the PDL [7] . The

magnitude and distribution of orthodontic force affect tissue reac-

tions, resulting in bone formation, bone resorption, or external api-

cal root resorption [12] . 

The maxillary sinus is an important anatomical structure that

should be considered for dental applications (implants, extractions,

or endodontic procedures) in the maxillary posterior teeth [13] .

The maxillary sinus floor (MSF) may occasionally extend into the

interradicular area, and the root tips of the molar teeth may pen-

etrate into the sinus cavity [ 14 , 15 ]. We believe that the proximity

between the MSF and the root apices may be a factor that affects

the behavior of the maxillary first molar under orthodontic load.

In previous studies, the relationship between bone loss and molar

tooth movement was analyzed by assessing the stress–strain dis-

tribution or M/F ratio [ 16 , 17 ]. However, neither the variation in the

initial inclination of the molar nor the proximity between the roots

and the MSF have been investigated. We believe that this study is

the first to evaluate the effect of the proximity of the maxillary

sinus on maxillary molar movement. In addition, the stress–strain

distribution, center of resistance (Cres), center of rotation, quantity

of movement, and direction of the palatal cusp, root tips, and cer-

vical region were assessed. 

The primary aim of this study is to determine whether sinus

proximity increases or decreases molar tooth tipping under the

force of expansion. The effect of sinus proximity was interpreted

in relation to the influence of alveolar bone level and initial buc-

colingual inclination. 

2. Materials and methods 

2.1. Basic solid model creation 

Ethical approval for the study was provided by the Afy-

onkarahisar Health Science University Clinical Research Ethics

Committee. Written consent for publication was obtained from

each participant. The computed tomography image of the appropri-

ate patient was selected from the archive and imported into Mim-

ics 21.0 software (Materialise NV, Leuven, Belgium) in DICOM (dig-

ital imaging and communications in medicine) format. The max-

illary first molar of the patient had no restorations, root canal

treatment, or morphological malformation. By setting an appro-

priate threshold value for the skeletal tissue, a three-dimensional

(3D) image of the patient’s head was created (minimum of 226

Hounsfield units [HU], and maximum 3071 HU, as instructed in the

Mimics software) [18] . Subsequently, the maxillary first molar was

separated from the other structures. The 3D stereolithography (STL)

model of the tooth was converted to a 3D computer-aided design

(CAD) model, using Ansys SpaceClaim software (Ansys, Canonsburg,

PA). The tooth measured 22.5 mm in height (from the palatal root

apex to the mesiopalatal cusp tip), and the crown’s mesiodistal and

buccopalatal widths were 11.3 and 13 mm, respectively. The palatal
root length (vertical distance from the alveolar crest to the apex)

was 12.8 mm, and the mesiobuccal and distobuccal root lengths

were 11.7 mm [8] . In the same software, a 0.25-mm–thick PDL was

first simulated around the roots. The alveolar bone was designed

to be 1 mm above the cervical line. The long axis of the tooth was

inclined 5 ° from the occlusal plane, in accordance with the normal

value [19] . An orthodontic attachment was modeled by imitation

of the palatal shield dimensions (height: 1.5 mm; width: 3.5 mm)

of a molar band (3M, Maplewood, USA) and placed on the palatal

crown surface of the tooth. 

2.2. Variations in basic models 

The long axes of the modified molar models were inclined buc-

cally at 0 °, 5 °, 10 °,15 °, and 20 ° relative to the axis of the normal

molar model. Alveolar bone loss (0, 2, 4, and 6 mm) was assumed

to be equal in all directions (buccolingual and mesiodistal), follow-

ing the cement enamel curvature. Finally, a total of 20 models (5

inclinations and 4 levels of bone) were generated to evaluate the

effect of bone loss and initial inclination ( Fig. 1 ). 

To evaluate the relationship between the root apex and the

proximity of the sinus floor, an artificial sinus was added to the

basic model, and the penetration of the roots into the sinus at var-

ious levels (2, 4, and 6 mm) was simulated separately ( Fig. 2 ). Cor-

tical bone thickness of the MSF was uniformly designed to be 0.5

mm [20] . However, the levels of penetration were altered by treat-

ing buccal roots as a single root in order to reduce the number of

model variations and better interpret the results, in order to reduce

the number of model variations and allow for clear interpretation

of the findings. Consequently, 9 different models were produced for

the purpose of assessing the effect of the proximity between root

apices and the MSF. 

2.3. Construction of finite element models 

All 29 models were imported into Ansys Workbench, version

21.0 (Ansys) for the construction of finite element models. Mechan-

ical properties of the PDL, tooth, cortical bone, cancelous bone, and

bracket were identified per previous research ( Table 1 ) [21] . All ma-

terials were assumed to be linear-elastic, isotropic, and homoge-

neous. Each of the structures in the models was transformed into

a 3D tetrahedral mesh to form elements and nodes. 

2.4. Loading, boundary conditions, and finite element analysis 

A 100 N expansion force (F) was applied from the palatal crown

surface perpendicular to the long axis of the tooth to simulate

the buccal tipping movement of the maxillary molar [ 7 , 16 ]. Five

points on the tooth surface (apices of the roots, cervical point, and

mesiopalatal cusp tip) were determined. A counter-tip moment of

force (Mt) that caused the crown to move toward the palate was

used to detect the Cres. Each of the 29 models was subjected to

a second force that resulted in bodily tooth movement in order to
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Fig. 1. A total of 20 maxillary molar models with 5 different buccal inclination values and 4 levels of bone loss were created. 

Fig. 2. A total of 9 additional models were obtained with root penetration at different levels (2, 4, and 6 mm). DB, distobuccal root; MB, mesiobuccal root; P, palatal root. 
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Fig. 3. Forces associated with the 3 diffirent loads applied to each of the 29 models. (A) The first force (100gf) was applied parallel to the occlusal plane at the midpoint 

of the bracket. The second load was a coupled force (2, 3) that generated a counter-tipping moment. (B) The third load was applied as a coupled force (4, 5) to create an 

anti-rotation moment. (C) A total of 3 red points placed at the apex of the palatal root, the tip of the mesiopalatal, and the distopalatal cusp were allowed to move only on 

the x-axis. The movement of the 3 red dots on the y- and z-axis was minimized. 

Fig. 4. Maximum compressive stress of the models with different amounts of alveolar bone loss and different buccal inclinations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

application point and the bracket was measured. The Mt was cre-

ated by applying a coupled force and allowed us to have a trans-

latory movement of a tooth ( Fig. 3 ). The length of the moment

arm was 2 mm. The Mt/F ratio varied from 0 to 10. Additionally,

a counter-rotation moment was created by applying coupled force

to minimize the rotational movement caused by the asymmetrical

structure of the molar. The length of the moment arm was 4 mm

for the counter-rotation moment. 

2.5. Evaluation of stress distubution on the PDL 

The stress distribution on the PDL was calculated automatically

by the software, based on the principal stress. Maximum tensile

stress, maximum compressive values, and the M/F ratio of each

model were recorded for comparison. The intersection point of 2

lines (the long axis of the upper molar before movement, and

the long axis after movement) was detected. Then the distance

(M/F = distance) from the point to the bracket was measured. Fur-
thermore, stress localization (on the cervical or root surface) was

interpreted comparatively. 

3. Results 

3.1. Variations in the centers of resistance 

The change in the location of the Cres was examined for each

amount of buccal inclination and alveolar bone loss. The increased

buccal inclination and alveolar bone loss resulted in higher posi-

tioning of the Cres ( Table 2 ). The highest Cres value was found for

the molar with 6 mm of bone loss combined with an inclination of

20 °. 
The penetration of the palatal root into the sinus at various lev-

els alone did not change the Cres localization, possibly owing to

the movement of the resistance center in the buccolingual direc-

tion rather than in the vertical direction. For the 2-mm root pen-

etration, the locations of the Cres in all 3 groups were very close

to one another ( Table 3 ). For the 4-mm and 6-mm penetrations,
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Fig. 5. The models with different amounts of alveolar bone loss and different buccal inclinations. Stress distribution patterns of the roots from the palatal view (red area: 

maximum tensile stress; blue area: maximum compressive stress). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

as the number of penetrated roots increased, the Cres moved coro-

nally. 

3.2. Variations in the M/F ratio 

The M/F ratio increased as initial buccal inclination or bone loss

increased ( Table 2 ). The highest M/F was found for the molar with

6 mm of bone loss combined with an inclination of 20 °. 
M/F ratios were found to be very close to each other in all 3

groups for 2-mm root penetration. As the amount of simultaneous

penetration of the 3 roots into the sinus increased, the M/F ratio

decreased ( Table 3 ). 

3.3. Maximum principal stress of the models 

Incremental changes in both the initial inclination value and

the amount of bone loss resulted in higher maximum compressive
stress on the apices of the buccal roots ( Figs. 4 and 5 ). The pen-

etration of the roots into the sinus did not increase the amount

of stress as much as the initial inclination or bone loss did, but

it changed the location of the stress. Simultaneous penetration of

all 3 roots into the sinus caused distribution of stress into the

cervical region ( Figs. 6 and 7 ). The maximum compressive stress

on the buccal roots was increased by the singular penetration of

the palatal root into the sinus. Similarly, penetration of the buccal

roots has resulted in increased compressive stress on the palatal

root. 

4. Discussion 

In previous studies using finite element models to evaluate the

biomechanics of the tooth, the maxillary molar was simulated as

being in an upright position [9] . Additionally, the proximity of the

roots to the MSF has not been taken into account. This study inves-
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Fig. 6. Maximum compressive stress of the models with different amounts of root penetration. DB, distobuccal root; MB, mesiobuccal root; P, palatal root. 

Fig. 7. The models with different amounts of root penetration and their stress distribution patterns from the palatal view. DB, distobuccal root; MB, mesiobuccal root; P, 

palatal root. 
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Table 2 

Moment to force (M/F) ratios and the center of resistance location values 

occurring at different degrees of initial inclination and bone loss 

M/F ratios 

Initial inclination Bone loss 0 mm 2 mm 4 mm 6 mm 

0 ° 11.4 12.7 12.9 13.7 

5 ° 12.1 12.9 13.2 14.3 

10 ° 13.2 13.8 14.0 15.2 

15 ° 14.0 14.6 14.9 15.9 

20 ° 14.5 14.9 15.5 15.9 

Center of resistance 

0 ° 11.4 12.5 13.4 14.2 

5 ° 12.1 13.0 13.9 14.8 

10 ° 12.8 13.8 14.7 15.7 

15 ° 13.7 14.2 15.0 15.8 

20 ° 14.2 14.7 15.2 15.9 

Table 3 

As a result of the penetration of the roots into 

the sinus, changes in the moment to force (M/F) 

ratio and the center of resistance location. DB, 

distobuccal; MB, mesiobuccal; P, palatal. 

M/F ratios 

Types of roots 2 mm 4 mm 6 mm 

P 11.07 10.87 10.7 

MB + DB 11.33 11.72 12.1 

P + MB + DB 10.98 10.5 9.8 

Center of resistance 

P 11.25 11.3 11.3 

MB + DB 11.42 11.13 10.4 

P + MB + DB 11.34 10.35 9.37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tigated how the tooth’s initial inclination, alveolar bone loss, and

maxillary sinus proximity affect tooth behavior and distribution of

PDL stress. The maxillary first molar was selected for the study be-

cause it is typically used as an anchor tooth to correct the trans-

verse maxillary deficiency. If the moment of the tooth is not cor-

rectly set, the buccal overtipping of the crown and the extrusion of

the palatal cusp may cause open bite. The direction and magnitude

of the load must be set correctly to avoid unwanted movement of

the tooth and possible root resorption. 

Sung et al. reported that the Cres moves toward the apex due

to alveolar bone loss, but the relative distance between the Cres

and the alveolar crest decreases [23] . Therefore, when the alveo-

lar bone level or the PDL supports decreases, the magnitude of the

force should be reduced and smaller moments should be created

to achieve physiologically tolerable movement [ 23 , 24 ]. Due to the

reduced bone support and PDL area, the same amount of force on

the crown causes more PDL pressure than that occurs without bone

loss. However, a decrease in bone support from the apical to coro-

nal direction may be seen in maxillary molar teeth, owing to sinus

proximity, similar to bone loss from the coronal to apical direc-

tion. This fact is sometimes overlooked by clinicians. We believe

that the effect of sinus proximity on decrease in bone support for

tooth movement has not been investigated previously. 

In this study, it was observed that as alveolar bone loss in-

creases, the initial tipping of the crown increases. This finding is

consistent with the results of previous studies [ 22 , 24 ]. Cobo et al.

reported that, due to alveolar bone loss, the Cres may be located

above the alveolar bone crest [25] . Similar findings were obtained

in our study. The Cres, on the other hand, moved more coronally

as the penetration of the roots into the sinus increased. However,

the change in the M/F ratio for the same models was not as pro-
nounced as that in the Cres. The thickness of the cortical bone (0.5

mm) around the maxillary sinus may affect this change, because it

provides bicortical anchorage by penetration of roots into the si-

nus. The bicortical retention affecting the biomechanics of tooth

movement is considered to be similar to the bicortical anchorage

provided by miniscrews [ 26 , 27 ]. 

Both alveolar bone loss and increased initial inclination caused

an increase in maximum compressive stress at the root tips. This

situation might trigger resorption of the roots. The singular pene-

tration of the palatal root or the common penetration of 2 buccal

roots increased the compressive stress on the root surface, and the

stress was distributed on the root apices. We suggest that this dis-

tribution is related to the cortical bone around the maxillary sinus,

which provides additional root resistance. The penetration of the

palatal root into the sinus, to various levels, alone decreased the

M/F ratio, an effect that may be related to the significant resistance

shown by the buccal roots during the transverse movement of the

tooth. The simultaneous penetration of all 3 roots into the sinus

caused more cervical concentration of the maximum compressive

stress, another factor that may increase or accelerate the risk of

root resorption. 

The buccal bone wall thickness of the maxillary molar varies

[ 28 , 29 ]. The migration of the compressive stress toward the cervi-

cal region could reduce the bone thickness in patients with a thick

bone biotype in the posterior region. If patients have a thin bio-

type, it may cause gingival recession. A thin biotype may also in-

duce cervical resorption in cases with high bone density in the re-

gion where stress is concentrated [30] . 

This study has some limitations. Normally, PDL thickness is not

uniform; it varies from apex to cervix [26] . Furthermore, PDL has

nonlinear and anisotropic physiology due to tissue fluid in its struc-

ture [27] . However, in this study, the PDL was assumed to be uni-

form in thickness, linear, and isotropic. The shape (conical or rect-

angular) and length of the roots influence the position of the Cres

and the distribution of stress in the PDL [31] . Yoshida et al. hypoth-

esized that more-tapered roots result in a more occlusally located

Cres [32] . In this study, real tooth morphology was simulated us-

ing the maxillary molar of a randomly selected patient. Important

to keep in mind is the fact that the root forms, lengths, and dis-

tances are all factors that affect the results of the finite element

analysis. The results obtained from a single tooth make it difficult

to reach an overall conclusion. Due to wide anatomical variations

in real life, the findings should be used as a reference for the clin-

ical assessment of the biomechanics of tooth movement. 

The main clinical implication of this study is that sinus proxim-

ity can reduce tipping by providing bicortical anchoring to the mo-

lar, particularly in devices that anchor directly to the molar, such as

hybrid hyrax. Other implications are that more tipping can be ex-

pected in patients with a greater initial buccal–lingual inclination,

and the expansion force may cause more molar tipping in adults

with reduced alveolar bone levels or patients with periodontal dis-

ease. Further clinical studies are required to test all of these clini-

cal implications, particularly the main finding regarding the effect

of sinus proximity. 

5. Conclusions 

• Increasing both the amount of bone loss and the initial inclina-

tion value resulted in more apical movement of the center of

resistance and increased maximum compressive stress. 
• The penetration of the roots into the sinus did not increase the

maximum compressive stress as much as did alveolar bone loss

and change of the initial inclination. However, it caused stress

distributions to be concentrated in a more cervical position. 
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• The simultaneous penetration of all 3 roots into the sinus cre-

ated a bicortical anchorage effect and reduced the M/F ratio.

This effect may allow clinicians to produce less crown tipping

during maxillary expansion. 
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