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A B S T R A C T

Plant polyphenols attract researchers because of their bioactive properties. In this study, the chemical com-
positions and in vitro antioxidant and enzyme inhibitory activities of ethyl acetate (EtOAc), methanol
(MeOH), and water extracts obtained from the aerial parts of Acanthus spinosus L. were investigated. The
MeOH extract was found to be rich in phenolics and flavonoids (47.4 mg GAE/g and 19.2 mg RE/g, respec-
tively). Verbascoside (28979 mg/g), vanillic acid (4342 mg/g), pinoresinol (3211 mg/g), syringic acid (1272
mg/g), and kaempferol (1170 mg/g) were detected as the main components of MeOH extract in chro-
matographic analyzes. While MeOH extract showed high activity in DPPH radical scavenging, CUPRAC and
FRAP tests (44.1, 106, and 60.8 mg TE/g, respectively), chelating effect and phosphomolybdenum tests
resulted in the superiority of EtOAc extract (18.6 mg EDTAE/g and 473 mg TE/g, respectively). The EtOAc
extract exhibited notable activities in the butyrylcholinesterase (BChE), a-amylase, and a glucosidase inhibi-
tory activity tests (1.9 GALAE/g, 785 and 1658 mg ACE/g, respectively). It has been concluded that A. spinosus
extracts are an alternative source of phytochemicals in the food, cosmetic and medical industries due to their
remarkable antioxidant and enzyme inhibitory activities.

© 2021 SAAB. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Plant polyphenols are biologically active molecules that are natu-
rally synthesized by plants belonging to various families and carry
hydroxyl groups attached to aromatic rings in their structures
(Zhou et al., 2019). It is possible to consider plant polyphenols in two
basic categories, flavonoids and non-flavonoids, for ease of classifica-
tion. Flavonoids are divided into various subgroups such as flavones,
flavonols, chalcones, anthocyanidins, flavonols, flavanones. Among
the non-flavonoid polyphenols, there are phenolic acids, saponins,
stilbenes, tannins, etc. (Zhou et al., 2019). Researchers suggest that
many of these bioactive molecules are highly capable of antioxidant
activity. Therefore, there is a consensus that the damage due to oxi-
dative molecules is reduced in people-fed diets rich in polyphenols
(Boo, 2019; Pawlowska et al., 2019).

Alzheimer's is a disease that affects many people around the
world. Many interrelated proteins play a critical role in the patho-
genesis of this disease. During the disease, cognitive skills weaken
depending on the decrease of cortical and hippocampal acetylcho-
line (ACh) and butyrylcholine (BCh) levels in the brain (Melni-
kova, 2007). ACh and BCh reduction in the brain due to
cholinesterase (ChE) activity usually begins to appear after the age
of 60. Researchers have determined that there is an opposite rela-
tionship between the use of acetylcholinesterase (AChE) and butyr-
ylcholinesterase (BChE) inhibitors and the progression of the
disease (Sabbagh, 2009). Some ChE inhibitors such as donepezil,
huperzine A, tacrine, and galantamine have been reported to be suc-
cessful in delaying disease progression (Coutrtney et al., 2004;
Davis et al., 1992; Thomsen and Kewitz, 1990; Xu et al., 1995).
Researchers have so far proven that many plant species from many
plant families harbor phytochemicals with ChE inhibitory activity
(Ahmed et al., 2013; Ata et al., 2010).

Type 2 diabetes is a non-inherited disease characterized by high
blood sugar. It usually occurs due to an unbalanced diet and a seden-
tary lifestyle. An increase in insulin resistance is observed in these
patients (Zhang et al., 2014). One of the most effective ways to elimi-
nate post-prandial hyperglycemia is to reduce carbohydrate absorp-
tion by inhibiting a-amylase and a-glucosidase responsible for
carbohydrate digestion in type 2 diabetes patients (Bhandari et al.,
2008; Shim et al., 2003). Acarbose is one of the most effective a-amy-
lase/a-glucosidase inhibitors known today. However, since it exhibits
undesirable side effects on many organs, especially the liver, the use
of this molecule in the treatment of type 2 diabetes is unlikely
(Tundis et al., 2010). At the same time, oxidative stress is one of the
main factors that complicate the treatment of type 2 diabetes
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Figure 1. Total flavonoid and phenolic contents of A. spinosus extracts. RE and GAE: Rutin and gallic acid equivalents, respectively. Values indicated by the same superscripts are not
different from the honestly significant difference after Tukey's hoc test at a 5% significance level.

Table 1
Concentration (mg/g extract) of selected phenolic compounds in A. spinosus
extracts.

Compound Extracts

EtOAc MeOH Water

Gallic acid 4.1§0.3 33.9§0.5a 17.2§0.6b

Protocatechuic acid 93.8§1.0c 889§1a 333§2b

3.4-Dihydroxyphenylacetic acid 13.3§0.2b 35.1§3.3a 17.2§0.2b

Pyrocatechol 39.3§0.7c 174§5b 227§3a

(+)-Catechin nd 8.4§0.1 nd
Chlorogenic acid 6.2§0.2b 9.2§0.2a 4.2§0.1c

2.5-Dihydroxybenzoic acid 13.8§0.2c 28.2§1.2b 48.7§0.2a

4-Hydroxybenzoic acid 167§2c 979§13a 286§4b

(-)-Epicatechin 2.4§0.1a 2.4§0.1a 2.4§0.1a

Vanillic acid 449§31b 4342§37a 309§11c

Caffeic acid 17.9§0.3c 272§2a 114§5b

Syringic acid 119§15c 1272§19a 478§1b

3-Hydroxybenzoic acid 14.1§0.4a 15.7§1.6a 8.2§0.3b

Vanillin 94§1b 133§4a 11.1§0.3c

Verbascoside 287§20b 28979§267a 120§1b

Taxifolin 9.7§0.1b 14.6§0.2a 7.4§0.2c

p-Coumaric acid 54.8§3.3c 653§3a 125§2b

Sinapic acid 7.3§0.5c 98§10b 144§1a

Ferulic acid 27.2§0.3c 467§3a 218§8b

Luteolin 7-glucoside 3.3§0.2b 44.5§0.4a nd
Hesperidin 10.2§0.2b 732§1a 0.88§0.05c

Rosmarinic acid 11.5§0.1b 14.2§0.5a 7.8§0.1c

Hyperoside 8.8§0.2b 267§1a 1.6§0.1c

Apigenin 7-glucoside 4.4§0.1b 29.9§1.1a nd
2-Hydroxycinnamic acid 4.0§0.01a 2.4§0.1c 3.3§0.2b

Pinoresinol nd 3211§17a 495§21b

Eriodictyol 17.6§0.1c 73§2a 27.9§0.7b

Quercetin 4.4§0.1c 29.5§0.1a 8.3§0.1b

Luteolin 101§1b 407§1a 54.1§0.9c

Kaempferol 262§1b 1170§19a 67.1§0.2c

Apigenin 76§1b 153§2a 7.2§0.1c

The values indicated by the same superscripts within the same row are not differ-
ent according to Tukey’s honestly significant difference post hoc test at a 5% signifi-
cance level. nd: Not detected.
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(Hemalatha et al., 2016). Therefore, researchers expect candidate
molecules to exhibit antioxidant activity in addition to a-amylase/
a-glucosidase inhibitory activity. For this purpose, they have started
to take an intense interest in plant-derived polyphenols in recent
years (Pradeep and Sreerama, 2018).

Melanin, a heteropolymer of indole compounds, is synthesized in
melanosomes via tyrosinase (precursor). Studies have revealed that
some enzymes (e.g., TRP-1 and TRP-2) contribute to the production
of this pigment (Hearing and Jim�enez, 1987; Jimenez et al., 1991;
Tsukamoto et al., 1992). Excessive melanin synthesis leads to the
formation of unwanted spots on the skin and the browning of
freshly cut vegetables and fruits. Therefore, suppressing the mela-
nogenesis biosynthetic pathway (e.g., via tyrosinase inhibitors) is
critical for both the cosmetic and food industries (Masamoto et al.,
2003).

This study aimed to determine the chemical composition of
extracts from the aerial parts of Acanthus spinosus (L.) and to docu-
ment theirs in vitro antioxidant and enzyme inhibitory activities.

2. Materials and methods

2.1. Plant material and extract preparation

A. spinosus was collected from Kavaklidere, Çayboyu Neighbor-
hood, Mugla-Turkey (760 m, K 37o29 797’ D 028o19 112’). Dr. Olcay
Ceylan (Mugla Sitki Kocman University) performed the identification
of the species (Herbarium no: O.1620).

Aerial parts of the plants were used as the study material to obtain
solvent extracts. Yields of the EtOAc, MeOH and water extracts were
determined as 10.79, 8.77, and 9.75% (w/w), respectively. Details of
the extraction procedure can be found in the supplementary file.

2.2. Determination of the phenolic compositions of the extracts

Details of the spectrophotometric and chromatographic methods
were given in the supplementary file (Mollica et al., 2018).

2.3. Biological activity

The antioxidant and enzyme inhibitory activities of the extracts
were determined using the methods specified in the literature
(Apak et al., 2006; Kocak et al., 2016; Ozer et al., 2018; Tepe et al.,
136
2011; Zengin et al., 2015). Details of the methods used were included
in the supplementary file.

2.4. Statistical analysis

Details of the statistical analysis were presented in the supple-
mentary file.
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3. Results and discussion

3.1. Chemical compositions of the extracts

The chemical composition of A. spinosus species was analyzed
qualitatively and quantitatively by using spectrophotometric and
chromatographic methods. The total amounts of phenolics and flavo-
noids were given in Figure 1, respectively.
Figure 2. Antioxidant activity of A. spinosus extracts [TE and EDTAE mean Trolox and ethylen
the same superscripts are not different from the honestly significant difference after Tukey's
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According to the data in Figure 1, the MeOH extract was found to
be richer in terms of both compound groups than the other extracts.
The total phenolic and flavonoid contents of the MeOH extract were
47.4 mg GAE/g and 19.6 mg RE/g, respectively. On the other hand,
while the lowest extract in terms of phenolics was obtained with
EtOAc (31.3 mg GAE/g), the lowest extract in flavonoids was deter-
mined as water extract (10.6 mg RE/g).
ediaminetetraacetic acid (disodium salt) equivalents, respectively]. Values indicated by
hoc test at a 5% significance level.



Figure 3. Relative antioxidant capacity index of A. spinosus extracts.
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The phytochemical composition data of the extracts obtained as a
result of chromatographic analyzes were given in Table 1.

The data in Table 1 generally overlapped with the quantitative
data given in Figure 1. Chromatographic analyzes confirmed that the
MeOH extract was richer in most of the phytochemicals in the table
than the other extracts. According to the table, verbascoside (28979
mg/g), vanillic acid (4342 mg/g), pinoresinol (3211 mg/g), syringic
acid (1272 mg/g), and kaempferol (1170 mg/g) were the most abun-
dant phytochemicals in the MeOH extract. In addition, the extract
also contained significant amounts of protocatechuic and 4-hydroxy-
benzoic acids.

According to the results of the literature research, there is no
data on the chemical composition of the plant species analyzed in
the current study. Therefore, the phytochemical composition of A.
spinosus was brought to the literature for the first time with this
study.

3.2. Antioxidant activities of the extracts

The antioxidant activities of the extracts were analyzed by per-
forming radical scavenging, phosphomolybdenum, reducing power,
and chelating effect tests, respectively (Figure 2). Since the data
obtained from each test are expressed in different units, the relative
antioxidant activity capacity (RACI) test was applied to evaluate all
these data together and rank the extracts in terms of their activities
(Figure 3). In addition to the RACI values obtained, the correlation
Figure 4. Relative antioxidant capacity index (dashed red line with the triangle) an

138
between each RACI coefficient and the antioxidant activities of the
extracts was also presented in Figure 4.

In radical scavenging assay, the scavenging capacity of the
extracts on ABTS was higher than on DPPH. In DPPH radical scaveng-
ing test, the activity values of water and MeOH extracts were almost
equal to each other (43.9 and 44.1 mg TEs/g, respectively), while the
ABTS radical scavenging test resulted in the superiority of the water
extract (89.1 mg TE/g).

EtOAc extract took first place in the phosphomolybdenum test, in
which total antioxidant activity was analyzed (4730 TE/g). It was
d antioxidant activity (solid dark blue line with circle) of A. spinosus extracts.
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followed by the MeOH extract with 296 mg TE/g. A similar activity
profile was detected in the ferrous ion chelating activity test. In this
test, as in the phosphomolybdenum assay, the EtOAc extract exhib-
ited the highest activity (18.6 mg of EDTAE/g). The chelating capacity
of the water extract was found to be very close to that of the EtOAc
extract (16.7 mg EDTAE/g). In many previous studies by our research
group, it has been determined that the activity profile obtained from
the ferrous ion chelating assay and those obtained from other antiox-
idant activity tests are quite different from each other (Carev and
Figure 5. Enzyme inhibition activity of A. spinosus extracts. ACE, GALAE, and KAE mean aca
same superscripts are not different from the honestly significant difference after Tukey's hoc
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Sarikurkcu, 2021; Zengin et al., 2021). Based on these data, the mole-
cules responsible for the chelating activity are thought to probably
have low polarity.

In the CUPRAC and FRAP tests, where the reducing powers of the
extracts were analyzed, the MeOH extract exhibited the strongest
activity. The activities of the MeOH extract in the CUPRAC and FRAP
test systems were 106 and 61 mg TE/g, respectively. Water and EtOAc
extracts showed the weakest activity in these tests (80 and 40.9 mg
TE/g, respectively).
rbose, galanthamine, and kojic acid equivalents, respectively. Values indicated by the
test at a 5% significance level.
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Since an activity-based chromatographic system was not applied
in the current study, it would be more appropriate to make a litera-
ture review regarding the contribution of the major compounds
given in Table 1 to the activity. Literature data show that verbasco-
side (D'Imperio et al., 2014; Funes et al., 2009; Vertuani et al., 2011),
vanillic acid (Emmons et al., 1999; McDonald et al., 2001; Zheng and
Wang, 2001), pinoresinol (L�opez-Biedma et al., 2016; Wan et al.,
2015; Youssef et al., 2020), syringic acid (Belkheiri et al., 2010;
Cikman et al., 2015; Papadopoulos and Boskou, 1991) and kaempferol
(Deng et al., 2019; Jung et al., 2009), which are among the major com-
ponents in the extracts, can contribute significantly to the antioxi-
dant activity.

3.3. Enzyme inhibitory activities of the extracts

The inhibitory activity potentials of the extracts on CHEs, a-amy-
lase/a-glucosidase, and tyrosinase were given in Figure 5.

The inhibitory activities of the extracts on AChE were found to be
stronger than on BChE. The highest inhibitory activity on AChE was
exhibited by the MeOH extract (3.0 mg GALAE/g). It was followed by
the EtOAc and water extracts followed (2.2 and 0.2 mg GALAE/g,
respectively). The BChE inhibitory activity test resulted in the superi-
ority of the EtOAc extract (1.8 mg GALAE/g). The water extract did
not show any activity in this test system.

In the a-amylase/a-glucosidase inhibitory activity tests, in which
the antidiabetic activities of the extracts were investigated, higher
inhibitory activity against a-glucosidase was obtained. In both test
systems, the EtOAc extract exhibited the highest activity (785 and
1658 ACE/g, respectively). The water extract showed the weakest
activity against both enzymes (39.2 and 23.2 mg ACE/g, respectively).

The tyrosinase inhibitory activity test, in which the skin whitening
activities of the extracts were tested, resulted in the superiority of
MeOH extract (54.8 mg KAE/g). It was followed by EtOAc (32.5 mg
KAE/g) and water extracts (25.4 mg KAE/g), respectively.

According to the data in Table 1, verbascoside is present in high
amounts in both MeOH and EtOAc extracts. There are some reports
in the literature that this compound may show ChE inhibitory activity
or may contribute to the ChE inhibitory activities of the extracts it
contains (Alipieva et al., 2014; Burgos et al., 2020; Georgiev et al.,
2011). In addition, there are some reports that the high content of
vanillic acid (Işık and Beydemir, 2020; Szwajgier and Borowiec, 2012)
and kaempferol (Bahrani et al., 2014; Beg et al., 2018) in the EtOAc
extract may also contribute to ChE-inhibitory activity.

With a similar approach, it is possible to discuss literature data on
phytochemicals that contribute to the a-amylase/a-glucosidase
inhibitory activity of EtOAc extract. Collado-Gonz�alez et al. (2017)
reported that verbascoside exhibited strong inhibitory activity on
both enzymes. Several other reports are supporting this finding
(Angeloni et al., 2021; Tlili and Sarikurkcu, 2020).

Finally, compounds that may contribute to tyrosinase inhibitory
activity were discussed in this section. Just as in the AChE inhibitory
activity test, the MeOH extract showed strong activity in the tyrosi-
nase inhibitory activity test. It is thought that this activity may be due
to the high amount of verbascoside in the extract. Literature data are
supporting this finding. According to Son et al. (2011), verbascoside
inhibited monophenolase activity in a dose-dependent manner.
However, more detailed analyzes are needed to detect other com-
pounds that contribute to the activity.

4. Conclusions

In this study, the chemical composition and in vitro antioxidant
and enzyme inhibitory activities of EtOAc, MeOH, and water extracts
obtained from the aerial parts of A. spinosus were investigated. It is
thought that MeOH extract exhibits an antioxidant, AChE, and tyrosi-
nase inhibitory activity profile proportional to its rich phytochemical
140
content. Additionally, it was concluded that EtOAc extract could be
an effective inhibitor of ChE, a-amylase, and a-glucosidase.
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