Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBeker-Acay, Mehtap
dc.date.accessioned2021-05-05T22:14:06Z
dc.date.available2021-05-05T22:14:06Z
dc.date.issued2021
dc.identifier.issn1053-1807
dc.identifier.issn1522-2586
dc.identifier.urihttps://doi.org/10.1002/jmri.27358
dc.identifier.urihttps://hdl.handle.net/20.500.12933/293
dc.descriptionBeker-Acay, Mehtap/0000-0002-6048-046Xen_US
dc.descriptionWOS:000569908000001en_US
dc.descriptionPubMed: 32940967en_US
dc.description.abstractSince Roentgen's first discovery of the X beam, medical imaging has evolved beyond dreams. By increasing the integration of artificial intelligence technologies in recent years, radiology imaging has brought the opportunity to evaluate quantitative imaging parameters in clinical examinations and research. Radiomics refers to the extraction of a large number of quantitative features from medical images using data characterization algorithms. Radiomic analysis, as a novel method, has marked potential to display the features of the tumor microenvironment via deep-learning algorithms, and accordingly provides better diagnosis and assists in the personalized therapeutic approach.en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject[No Keywords]en_US
dc.titleEditorial for "MRI-Based Deep Learning Model for Distant Metastasis-Free Survival in Locoregionally Advanced Nasopharyngeal Carcinoma"en_US
dc.typeeditorialen_US
dc.departmentAFSÜ, Tıp Fakültesi, Dahili Tıp Bilimleri Bölümü, Radyoloji Ana Bilim Dalıen_US
dc.contributor.institutionauthorBeker-Acay, Mehtap
dc.identifier.doi10.1002/jmri.27358
dc.identifier.volume53en_US
dc.identifier.issue1en_US
dc.identifier.startpage179en_US
dc.identifier.endpage180en_US
dc.relation.journalJournal Of Magnetic Resonance Imagingen_US
dc.relation.publicationcategoryDiğeren_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster