Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorGencer, Adem
dc.contributor.authorToker, Yasin Ilter
dc.date.accessioned2025-12-28T16:41:10Z
dc.date.available2025-12-28T16:41:10Z
dc.date.issued2024
dc.identifier.issn2564-7784
dc.identifier.issn2564-7040
dc.identifier.urihttps://doi.org/10.58600/eurjther2018
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/1248944
dc.identifier.urihttps://hdl.handle.net/20.500.12933/2839
dc.description.abstractObjective: Pneumothorax refers to an abnormal accumulation of air in the pleural cavity. This condition is significant in terms of health and can provide a life-threatening risk, particularly when it is extensive or occurs alongside other medical conditions. Nevertheless, the scarcity of work on chest CT segmentation arises from the challenge of acquiring pixel-level annotations for chest X-rays. This paper presents and assesses a deep learning approach utilizing the Unet-Resnet-50 convolutional neural network architecture for accurately segmenting pneumothoraces on chest computed tomography (CT) images. Methods: We employed a private dataset including 2627 manually annotated slices obtained from 16 patients. We assessed the model's performance by measuring the dice similarity coefficient (DSC or F1 score), accuracy, area under the curve (AUC), precision, and recall on both the validation and test sets. Results: The binary accuracy of the test set was 0.9990; the precision was 0.9681; and the DSC was 0.9644. Although it contains less data (16 patients), we found that our deep learning-based artificial intelligence model has effective and compatible results with the literature. Conclusion: Deep learning models that will be used to detect common pathologies in thoracic surgery practice, such as pneumothorax, to determine their localization and size, will provide faster diagnosis and treatment to patients, and especially improve radiology workflow.
dc.language.isoen
dc.publisherPera Yayincilik Hizmetleri
dc.relation.ispartofEuropean Journal of Therapeutics
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectPneumothorax segmentation
dc.subjectDeep learning
dc.subjectConvolutional neural networks
dc.subjectMedical imaging
dc.subjectArtificial intelligence
dc.titleSegmentation of Pneumothorax on Chest CTs Using Deep Learning Based on Unet-Resnet-50 Convolutional Neural Network Structure
dc.typeArticle
dc.identifier.orcid0000-0001-9667-2757
dc.identifier.orcid0000-0003-1305-6524
dc.departmentAfyonkarahisar Sağlık Bilimleri Üniversitesi
dc.identifier.doi10.58600/eurjther2018
dc.identifier.volume30
dc.identifier.issue3
dc.identifier.startpage249
dc.identifier.endpage257
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.department-temp[Gencer, Adem; Toker, Yasin Ilter] Afyonkarahisar Hlth Sci Univ, Fac Med, Dept Thorac Surg, Zafer Saglik Kulliyesi,Dortyol Mah 2078 Sok 3 A Bl, Afyonkarahisar, Turkiye; [Toker, Yasin Ilter] Afyonkarahisar State Hosp, Dept Thorac Surg, Afyonkarahisar, Turkiye
dc.identifier.trdizinid1248944
dc.identifier.wosWOS:001175762900001
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakTR-Dizin
dc.snmzKA_WoS_20251227


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster