Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAkgul, Nilgun
dc.contributor.authorYilmaz, Cemile
dc.contributor.authorBilgir, Elif
dc.contributor.authorCelik, Ozer
dc.contributor.authorBaydar, Oguzhan
dc.contributor.authorBayrakdar, Ibrahim Sevki
dc.date.accessioned2025-12-28T16:40:31Z
dc.date.available2025-12-28T16:40:31Z
dc.date.issued2024
dc.identifier.issn1807-3107
dc.identifier.urihttps://doi.org/10.1590/1807-3107bor-2024.vol38.0098
dc.identifier.urihttps://hdl.handle.net/20.500.12933/2608
dc.description.abstractDental fillings, frequently used in dentistry to address various dental tissue issues, may pose problems when not aligned with the anatomical contours and physiology of dental and periodontal tissues. Our study aims to detect the prevalence and distribution of normal and overhanging filling restorations using a deep CNN architecture trained through supervised learning, on panoramic radiography images. A total of 10480 fillings and 2491 overhanging fillings were labeled using CranioCatch software from 2473 and 1850 images, respectively. After the data obtaining phase, validation (80%), training 10%), and test-groups (10%) were formed from images for both labelling. The YOLOv5x architecture was used to develop the AI model. The model's performance was assessed through a confusion matrix and sensitivity, precision, and F1 score values of the model were calculated. For filling, sensitivity is 0.95, precision is 0.97, and F1 score is 0.96; for overhanging were determined to be 0.86, 0.89, and 0.87, respectively. The results demonstrate the capacity of the YOLOv5 algorithm to segment dental radiographs efficiently and accurately and demonstrate proficiency in detecting and distinguishing between normal and overhanging filling restorations.
dc.language.isoen
dc.publisherSociedade Brasileira De Pesquisa Odontologica
dc.relation.ispartofBrazilian Oral Research
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectArtifical Intelligence
dc.subjectRadiography, Panoramic
dc.subjectDeep Learning
dc.subjectDentistry
dc.titleA YOLO-V5 approach for the evaluation of normal fillings and overhanging fillings: an artificial intelligence study
dc.typeArticle
dc.identifier.orcid0000-0001-9521-4682
dc.identifier.orcid0000-0002-8353-5347
dc.identifier.orcid0000-0002-4409-3101
dc.identifier.orcid0000-0001-5036-9867
dc.departmentAfyonkarahisar Sağlık Bilimleri Üniversitesi
dc.identifier.doi10.1590/1807-3107bor-2024.vol38.0098
dc.identifier.volume38
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.department-temp[Akgul, Nilgun] Pamukkale Univ, Fac Dent, Dept Restorat Dent, Denizli, Turkiye; [Yilmaz, Cemile] Afyonkarahisar Hlth Sci Univ, Fac Dent, Dept Restorat Dent, Afyonkarahisar, Turkiye; [Bilgir, Elif; Baydar, Oguzhan; Bayrakdar, Ibrahim Sevki] Eskisehir Osmangazi Univ, Fac Dent, Dept Oral & Maxillofacial Radiol, Eskisehir, Turkiye; [Celik, Ozer] Eskisehir Osmangazi Univ, Fac Sci, Dept Math Comp, Eskisehir, Turkiye
dc.identifier.pmid39356905
dc.identifier.scopus2-s2.0-85205528079
dc.identifier.scopusqualityQ2
dc.identifier.wosWOS:001332184600001
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.snmzKA_WoS_20251227


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster