Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorGencer, Kerem
dc.contributor.authorGencer, Gulcan
dc.contributor.authorCeran, Tugce Horozoglu
dc.contributor.authorEr Bilir, Aynur
dc.contributor.authorDogan, Mustafa
dc.date.accessioned2025-12-28T16:40:04Z
dc.date.available2025-12-28T16:40:04Z
dc.date.issued2025
dc.identifier.issn1572-1000
dc.identifier.issn1873-1597
dc.identifier.urihttps://doi.org/10.1016/j.pdpdt.2025.104552
dc.identifier.urihttps://hdl.handle.net/20.500.12933/2368
dc.description.abstractBackground: Diabetic retinopathy (DR) is a leading cause of visual impairment and blindness worldwide, necessitating early detection and accurate diagnosis. This study proposes a novel framework integrating Generative Adversarial Networks (GANs) for data augmentation, denoising autoencoders for noise reduction, and transfer learning with EfficientNetB0 to enhance the performance of DR classification models. Methods: GANs were employed to generate high-quality synthetic retinal images, effectively addressing class imbalance and enriching the training dataset. Denoising autoencoders further improved image quality by reducing noise and eliminating common artifacts such as speckle noise, motion blur, and illumination inconsistencies, providing clean and consistent inputs for the classification model. EfficientNetB0 was fine-tuned on the augmented and denoised dataset. Results: The framework achieved exceptional classification metrics, including 99.00 % accuracy, recall, and specificity, surpassing state-of-the-art methods. The study employed a custom-curated OCT dataset featuring high-resolution and clinically relevant images, addressing challenges such as limited annotated data and noisy inputs. Conclusions: Unlike existing studies, our work uniquely integrates GANs, autoencoders, and EfficientNetB0, demonstrating the robustness, scalability, and clinical potential of the proposed framework. Future directions include integrating interpretability tools to enhance clinical adoption and exploring additional imaging modalities to further improve generalizability. This study highlights the transformative potential of deep learning in addressing critical challenges in diabetic retinopathy diagnosis.
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofPhotodiagnosis And Photodynamic Therapy
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectDiabetic retinopathy
dc.subjectGenerative adversarial networks (GANs)
dc.subjectDenoising autoencoders
dc.subjectTransfer learning
dc.subjectMedical image analysis
dc.subjectPhotodiagnosis
dc.titlePhotodiagnosis with deep learning: A GAN and autoencoder-based approach for diabetic retinopathy detection
dc.typeArticle
dc.identifier.orcid0000-0002-3543-041X
dc.identifier.orcid0000-0002-2914-1056
dc.identifier.orcid0000-0003-2132-3098
dc.departmentAfyonkarahisar Sağlık Bilimleri Üniversitesi
dc.identifier.doi10.1016/j.pdpdt.2025.104552
dc.identifier.volume53
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.department-temp[Gencer, Kerem] Afyon Kocatepe Univ, Fac Engn, Dept Comp Engn, Afyonkarahisar, Turkiye; [Gencer, Gulcan] Afyonkarahisar Hlth Sci Univ, Fac Med, Dept Biostat & Med Informat, Afyonkarahisar, Turkiye; [Ceran, Tugce Horozoglu; Er Bilir, Aynur; Dogan, Mustafa] Afyonkarahisar Hlth Sci Univ, Fac Med, Dept Ophthalmol, Afyonkarahisar, Turkiye
dc.identifier.pmid40064432
dc.identifier.scopus2-s2.0-105000025378
dc.identifier.scopusqualityQ1
dc.identifier.wosWOS:001453208100001
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.snmzKA_WoS_20251227


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster