Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorYilmaz, Birkan Eyup
dc.contributor.authorOzbey, Furkan
dc.contributor.authorYilmaz, Busra Nur Gokkurt
dc.contributor.authorAkpinar, Hasan
dc.date.accessioned2025-12-28T16:40:02Z
dc.date.available2025-12-28T16:40:02Z
dc.date.issued2026
dc.identifier.issn2468-8509
dc.identifier.issn2468-7855
dc.identifier.urihttps://doi.org/10.1016/j.jormas.2025.102644
dc.identifier.urihttps://hdl.handle.net/20.500.12933/2336
dc.description.abstractIntroduction: This study aimed to evaluate whether large language models (LLMs) can emulate the clinical anamnesis process and diagnostic reasoning of oral and maxillofacial surgeons. Materials and methods: Twenty-five real clinical cases from five diagnostic categories maxillary sinus diseases, periapical pathologies, orofacial pain disorders and neuropathic pain syndromes, odontogenic cysts and tumors, and temporomandibular joint disorders were simulated. Three LLMs (ChatGPT 4o, Claude 4, and Gemini 2.5) were each provided only the patient's chief complaint and instructed to ask up to ten sequential questions to reach a diagnosis. One independent evaluators scored model performances on a 100 point scale, deducting 10 points for each additional question asked. Statistical comparisons were conducted using Kruskal-Wallis and Bonferroni post-hoc tests. Results: No statistically significant difference was found among the models (p = 0.431). Gemini achieved the highest mean diagnostic score (43.6 +/- 40.71), followed by ChatGPT-4o (37.2 +/- 36.8) and Claude (31.6 +/- 33.0). Diagnostic accuracy was highest in moderately difficult cases (p = 0.021) and markedly decreased in difficult ones (p = 0.016). Conclusion: LLMs demonstrated the ability to perform structured anamnesis and reach clinically meaningful diagnostic conclusions using limited information. Although no significant difference was observed among the models, Gemini achieved the highest overall mean score. These findings indicate that LLMs hold potential as complementary tools for diagnostic reasoning and as simulation-based educational resources in oral and maxillofacial surgery.
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofJournal of Stomatology Oral And Maxillofacial Surgery
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectLarge language models
dc.subjectChatGPT
dc.subjectClaude
dc.subjectGemini
dc.subjectAnamnesis
dc.subjectDiagnostic reasoning
dc.subjectOral and maxillofacial surgery
dc.subjectArtificial intelligence
dc.titleCan large language models perform clinical anamnesis? Comparative evaluation of ChatGPT, Claude, and Gemini in diagnostic reasoning through case-based questioning in oral and maxillofacial disorders
dc.typeArticle
dc.departmentAfyonkarahisar Sağlık Bilimleri Üniversitesi
dc.identifier.doi10.1016/j.jormas.2025.102644
dc.identifier.volume127
dc.identifier.issue2
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.department-temp[Yilmaz, Birkan Eyup] Giresun Univ, Fac Dent, Dept Oral & Maxillofacial Surg, Giresun, Turkiye; [Ozbey, Furkan] Afyonkarahisar Hlth Sci Univ, Fac Dent, Dept Dentomaxillofacial Radiol, Afyonkarahisar, Turkiye; [Yilmaz, Busra Nur Gokkurt] Giresun Oral & Dent Hlth Ctr, Dept Dentomaxillofacial Radiol, Giresun, Turkiye; [Akpinar, Hasan] Afyonkarahisar Hlth Sci Univ, Fac Dent, Dept Oral & Maxillofacial Surg, Afyonkarahisar, Turkiye
dc.identifier.pmid41213498
dc.identifier.scopus2-s2.0-105022176767
dc.identifier.scopusqualityQ2
dc.identifier.wosWOS:001628324700003
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.snmzKA_WoS_20251227


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster