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Abstract

Purpose To evaluate macular and peripapillary

vascular changes by optical coherence tomography

angiography (OCTA) in children with type 1 diabetes

mellitus (T1DM) without diabetic retinopathy (DR).

Methods This study included 46 patients with T1DM

and 46 age-sex matched healthy subjects. All partic-

ipants were evaluated in terms of macular and optic

disk parameters by using AngioVue. Foveal avascular

zone (FAZ) area, macular and optic disk vessel density

(VD) were analyzed. The correlation of these param-

eters with metabolic factors such as disease duration,

mean hemoglobin A1c (HbA1c), insulin-like growth

factor 1 (IGF-1) standard deviation score (SDS),

homocysteine (Hcy) level, body mass index (BMI)

SDS and daily insulin dose was also investigated in

T1DM group.

Results No significant difference was found in FAZ

area and optic disk radial peripapillary capillary (RPC)

VD comparing diabetic and control groups. In all

macular regions, VD was significantly lower in T1DM

versus control group both in superficial capillary

plexus (SCP) and deep capillary plexus (DCP). None

of the metabolic parameters was correlated with FAZ

area and optic disk RPC-VD. Vascular density in SCP

was negatively correlated with mean HbA1c and

positively correlated with IGF-1 SDS. Homocysteine

level was negatively correlated with DCP-VD in all

areas.

Conclusion In children with T1DM without clini-

cally apparent DR, VD in SCP and DCP was decreased

and OCTA is a valuable imaging technique for

detecting early vascular changes. The metabolic

parameters such as mean HbA1c, IGF-1 SDS and

Hcy affect the macular VD in diabetic children.Trial
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Introduction

Diabetes mellitus (DM) is a chronic endocrine and

metabolic disease with a characteristic sign of hyper-

glycemia that occurs as a result of insufficiency in

insulin production or its effect; diagnosis is made

based on characteristic clinical findings (polyuria,

polydipsia, weight loss) accompanying admission

blood glucose measurements [1, 2]. In a meta-analysis

and review study published in 2020, it was seen that

the prevalence and incidence of type 1 diabetes

increased worldwide [3]. Approximately, 96,000

children under the age of 15 are diagnosed with type

1 diabetes annually worldwide [4].

Diabetes mellitus is known to predispose to

microvascular (retinopathy, nephropathy, and neu-

ropathy) and macrovascular complications in the long

term. These complications are seen at an earlier age,

especially in poorly controlled diabetes. Screening for

diabetic retinopathy (DR) is recommended from the

age of 11 years (formerly 10 years). Annual screening

is recommended for children with type 1 diabetes from

the fifth year in those diagnosed in the prepubertal

period and from the second year in those diagnosed in

the pubertal period. In terms of retinopathy screening,

ophthalmologist examination is performed by biomi-

croscopic examination and fundus evaluation in the

dilated eye, and in recent years, optical coherence

tomography (OCT) and optical coherence tomography

angiography (OCTA) have also been carried out [5, 6].

Optical coherence tomography angiography is a

light based on rapid, non-invasive and reliable imag-

ing technique that allows us to evaluate all vascular

layers of the retina separately without dye injection. In

addition to a high-quality images of retinal vascular

structure without leakage, quantitative parameters

such as foveal avascular zone and perifoveal capillary

vascular density can be evaluated with the OCTA. In

recent years, early vascular changes have been

reported with OCTA in the absence of clinical signs

of DR [7–11].

Therefore, we aimed to evaluate the early vascular

changes in T1DM patients without clinically apparent

DR in this study. We also examined whether disease

duration, mean hemoglobin A1c (HbA1c), insulin-like

growth factor 1 (IGF-1) standard deviation score

(SDS), Hcy level, body mass index (BMI) SDS and

daily insulin dose have a predictive value on OCTA

parameters.

Materials and methods

Study population

This prospective comparative study was conducted in

the Pediatric Endocrinology and Ophthalmology

Clinic of Afyonkarahisar Health Sciences University

and organized in accordance with the ethical standards

settled by the Ethics Committee of Faculty of

Medicine, Afyonkarahisar Health Sciences Univer-

sity. All of the study procedures were performed in

accordance with the Declaration of Helsinki. Informed

consent was obtained from patients and their parents.

In childhood and adolescence, diabetes mellitus is

diagnosed with the classical findings specific to

diabetes (polyuria, polydipsia, weight loss) and blood

glucose measurements [12]. The group we included in

our study consisted of diabetics who required intensive

insulin therapy in the post-diagnosis period and had

diabetes-specific autoantibodies (GAD, IA2, IAA,

ZnT8) positive at presentation and low c-peptide

levels. Inclusion criteria for the T1DM group were as

follows:

– Those who were 11 years and older with a diabetes

duration of 2 years and/or above.

– Cases diagnosed in the prepubertal period and

followed with the diagnosis of type 1 diabetes

mellitus for more than 5 years, since puberty and

prepubertal diabetes duration affect the risk of

developing diabetic retinopathy.

– Absence of clinically visible DR at dilated fundus

examination.

The age- and sex-matched control group consisted

of healthy children without systemic or ocular disease

who applied to the ophthalmology clinic for refractive

problems or routine control. The exclusion criteria for

both groups were as follows: spherical or cylindrical

refractive error greater than ± 3 D, history of ocular

trauma or surgery, systemic diseases affecting poste-

rior segment of eye, glaucoma, uveitis, optic nerve

diseases, use of topical or systemic medications

(except insulin in T1DM group), significant media

opacity and poor fixation.

As an anthropometric assessment, weight, height,

BMI percentiles and SDSs, puberty stage, and duration

of diabetes of the patients with T1DM were recorded.

The state of puberty was evaluated according to tanner

staging. Stage 1 was considered prepubertal, stage 2
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and later was considered as pubertal/postpubertal. The

puberty stage of diabetic participants was in stage 2 or

later. In terms of glycemic control, the average level of

those with at least two HbA1c measurements per year

in the last two years was included, expressed as mean

HbA1c. Twenty-four-hour urine microalbumin levels

of the patients in the study group were obtained from

previous records. Microalbuminuria was not detected

in the last control in diabetic individuals. Renal

function tests (urea and creatinine), systolic and

diastolic blood pressures were normal in the diabetic

group. Hemoglobin A1c, serum IGF-1 and Hcy levels

of diabetics were evaluated. For percentile and SDS

calculations of anthropometric data, evaluation was

made according to CDC between the ages of 2–20

growth reference data and childmetrics online calcu-

lation program was used [13]. IGF-1 SDS was

calculated according to age- and gender-specific

reference data [14]. Serum Hcy was measured

enzyme-linked immunosorbent assay (ELISA) and

HbA1c level was measured using electro-chemilumi-

nescence immunoassay (ECLIA) technique by using

appropriate commercial kits (Cobas 8000 e602 ana-

lyzer, Roche Diagnostics, Mannheim, Germany), and

IGF-1 was measured using immunoturbidimetric

method (Cobas 8000 c502 analyzer, Roche Diagnos-

tics, Mannheim, Germany). The daily insulin dose was

calculated by dividing the sum of basal and bolus

insulin doses by body weight.

All participants performed a comprehensive oph-

thalmologic examination including best corrected

visual acuity by decimal system, intraocular pressure

measurements, anterior segment biomicroscopy,

dilated fundus examination and OCTA (RTVue XR

Avanti; Optovue, Inc. Fremont, CA) measurements.

OCTA measurements were obtained by the same

experienced examiner on the same day with exami-

nation after pupil dilatation. The right eye of each

participant was evaluated to avoid intra-individual

bias, and scans with image quality score greater than 7

were used for analysis.

OCTA measurements

OCTA scans were obtained by the AngioVue Imaging

System version 2018.0.0.18 (RTVue XR Avanti;

Optovue, Inc. Fremont, CA) using split-spectrum

amplitude decorrelation angiography (SSADA) and

projection artifact removal algorithm. The AngioVue

Imaging System is a spectral domain system which

detects motion in blood vessel lumen by measuring the

variation in reflected OCT signal amplitude between

consecutive cross-sectional scans and can acquire

70,000 A-scans per seconds. In addition to the

structural assessment of the retinal microvascular

structure device allows us to provide quantitative data

such as flow and non-flow area, foveal avascular zone

(FAZ) and vessel density (VD).

In this study, 6 9 6 mm central macular imaging

size was used to measure FAZ and VD of the

superficial and deep vascular complex. Automatic

segmentation was used for measurements, and the

segmentation results were manually checked. For the

superficial capillary plexus (SCP) layer, the borders

were defined as internal limiting membrane and 9 lm

below the inner plexiform layer. The layer between

9 lm below the inner plexiform layer and 9 lm above

the outer plexiform layer was confined as deep

capillary plexus (DCP) layer. 6 9 6 mm macular

scan is based on an Early Treatment Diabetic

Retinopathy Study (ETDRS) grid centered on the

macula. Accordingly, the macula is divided into 3

concentric rings with a diameter of 1, 3 and 6 mm, and

these rings are described as fovea, parafovea and

perifovea, respectively, both on superficial and deep

vascular plexus. Vessel density was defined as the

percentage of the area occupied by the vessels on both

SCP and DCP. The FAZ area was determined on the en

face OCT imaging and automatically calculated as

mm2.

Optic disk radial peripapillary capillary (RPC)

network measurements in small vessels were evalu-

ated with 4.5 9 4.5 mm optic disk scans. RPC vessel

density in whole image, inside disk and peripapillary

area was measured automatically and recorded as

percentage.

Statistical analysis

In statistical analysis, mean, standard deviation,

minimum and maximum values of numerical data

were calculated. Categorical data were expressed as

frequency and percentage (%). Shapiro–Wilk test was

used to evaluate normality assumption. Furthermore,

data with kurtosis and skewness values in the range of

-1.5, ? 1.5 were accepted as showing normal distri-

bution. Levene test was used to evaluate the homo-

geneity of variances. Student’s T test was used to
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evaluate the difference in the mean between the groups

when the parametric test assumptions were provided,

and the Mann–Whitney U test was used if the

parametric test assumptions were not met. In order

to show the relationship between the groups, Pearson

correlation analysis was used in the groups with

normal distribution, and Spearman correlation analy-

sis was used if they did not show normal distribution.

Statistically, a p value of\ 0.05 was considered

significant. SPSS version 24.0 (IBM Corporation,

Armonk, NY, USA) software program was used for all

analyzes.

Results

Forty-six eyes of 46 patients with T1DM and 46 eyes

of 46 age- and sex-matched healthy children were

included. There were 20 (43.5%) males and 26

(56.5%) females, and the mean age was

14.4 ± 2.5 years (range, 9–18 years) in both groups.

In diabetic group, the mean disease duration was

6.9 ± 3.1 years (range, 3–14 years) and mean HbA1c

was 8.69 ± 1.27% (range, 6.14–11.7). The mean IGF-

1 SDS was -0.45 ± 1.26 and ranged between -2.9

and ? 4.5. Homocysteine level was

8.37 ± 2.73 lmol/l (range 4.2- 16.4). All of the

diabetic patients BMI z scores ranged between -2.0

and ? 2.1 SDS and the mean value was 0.20 ± 1.11.

The mean daily total insulin dose was 1.09 ± 0.22

u/kg (0.72–1.56).

The signal quality of OCTA was 8.67 ± 0.60 and

8.65 ± 0.56 in T1DM and control groups, respec-

tively, and there was no difference between the groups

(p = 0.86). There was statistically no significant

differences between the groups with regard to FAZ

area (p = 0.40). The mean values and comparison of

SCP vascular density is shown in Table 1. At the SCP,

diabetic children revealed a significantly decreased

VD compared to control subjects in all macular areas

except fovea.

Whole and all sectorial VD in DCP was signifi-

cantly lower in subjects with diabetes than in controls,

except in the perifoveal inferior hemifield. (Table 2).

None of the optic disk parameters was statistically

significantly different between the groups (Table 3).

Table 4 shows relationship between VD and disease

duration, mean HbA1c, IGF-1 SDS, Hcy, BMI SDS

and daily insulin dose. None of these parameters was

correlated with FAZ area and optic disk RPC-VD.

Mean HbA1c was negatively correlated with SCP-VD

in whole, parafoveal and perifoveal regions

(p = 0.003, p = 0.002 and p = 0.009 respectively)

(Fig. 1). There was a significant positive correlation

between IGF-1 SDS and VD in SCP as shown in

scatter plot graphic (p = 0.005, p = 0.01 and

p = 0.003 for whole, parafoveal and perifoveal

regions respectively) (Fig. 2). DCP-VD in all areas

was negatively correlated with Hcy level (p = 0.01,

p = 0.03 and p = 0.01 for whole, parafoveal and

perifoveal regions) (Fig. 3). BMI SDS and daily

insulin dose were not significantly correlated with

vascular density.

Discussion

In DR, endothelial cells and pericytes loss, the blood-

retinal barrier are disrupted, ocular ischemia and

capillary occlusion occur and eventually lead to the

classic ocular manifestations of the disease including

Table 1 Comparison of superficial capillary plexus vessel

density between two groups

T1DM Group Control Group p

FAZ area 0.262 ± 0.009 0.247 ± 0.079 0.40

Whole image 51.03 ± 2.56 52.67 ± 2.35 0.000

Superior-Hemi 49.32 ± 2.59 52.39 ± 2.43 0.000

Inferior- Hemi 49.47 ± 2.65 52.96 ± 2.41 0.000

Fovea 22.03 ± 6.15 23.97 ± 6.45 0.14

Parafovea 51.97 ± 3.67 55.66 ± 2.28 0.000

Superior-Hemi 52.23 ± 3.61 55.81 ± 2.22 0.000

Inferior-Hemi 51.70 ± 3,91 55.48 ± 2.63 0.000

Temporal 51.57 ± 3.63 55.34 ± 2.08 0.000

Superior 52.96 ± 4.04 56.64 ± 2.81 0.000

Nasal 51.30 ± 3.74 55.06 ± 2.75 0.000

Inferior 51.97 ± 4.45 55.61 ± 2.89 0.000

Perifovea 49.80 ± 2.47 53.14 ± 2.37 0.000

Superior-Hemi 49.67 ± 2.52 52.90 ± 2.44 0.000

Inferior-Hemi 49.91 ± 2.51 53.37 ± 2.44 0.000

Temporal 46.35 ± 2.65 49.89 ± 2.32 0.000

Superior 49.90 ± 2.83 52.83 ± 2.89 0.000

Nasal 52.88 ± 2.49 56.27 ± 2.60 0.000

Inferior 50.18 ± 2.89 53.53 ± 2.74 0.000

FAZ Foveal avascular zone, T1DM Type 1 diabetes mellitus
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hemorrhages, cotton wool spots, lipid exudates, and

even neovascularization. Direct hyperglycemia, many

angiogenic stimulators and inhibitors, advanced gly-

cation end products play a role in pathogenesis. The

retina allows us to evaluate macro- and microvascular

end organ damage in T1DM easily and non-inva-

sively. In recent years, the introduction of OCTA,

which is a non-invasive imaging method that does not

require dye injection, into our daily practice enabled

us to detect some retinal microvascular changes

earlier.

Recent studies reported that enlarged FAZ area was

a sign of early ischemia and a predictive of DR

severity and progression [15, 16]. There are studies

reporting that the FAZ area expands as the duration of

diabetes increases [17]. In our study although the FAZ

area was larger than controls, the difference was not

statistically significant. Similarly, some studies con-

cluded that FAZ area was not different in the absence

of clinically visible DR [18, 19]. Conversely, some

studies reported that the FAZ area is significantly

larger in both SCP and DCP even without clinical

signs of DR [9, 20].

Vascular density is another valuable indicator that

provides information about capillary occlusion. In the

literature, studies evaluating vascular density in type 1

diabetes have reported controversial results. Scarinci

et al. concluded that the microvascular change in the

DCP might be a reliable biomarker to evaluate the

clinical progression of DR in mild clinical signs of

non-proliferative DR without macular edema [21].

Simonett et al. also shown that while there was no

difference in SCP-VD, a decrease in DCP vascular

density occurred initially [22]. In a study including 25

T1DM patients without DR by Carnevali et al., the

decrease in VD has been shown in only DCP [7]. Our

study reveals a significant reduction in VD on both

SCP and DCP (except perifoveal inferior hemifield) in

children without clinically visible DR. Similar to our

study, Kara et al. showed a decreased vascular density

in both SCP and DCP [18]. Mameli et al. also

demonstrated a decrease in vascular density in all

regions except fovea [11]. In contrast to our study,

Demir et al. and Gołębiewska et al. demonstrated that

vascular density in DCP and SCP was not different

from the control group [8, 23].

Initially, diabetic retinopathy was defined as a pure

microvascular disease, while it has complex patho-

genetic mechanisms such as microglial cell activation,

ganglion cell loss, progressive neurovascular unit

degeneration, pericyte depletion and low-grade

chronic inflammation [24–26]. The literature is con-

troversial in the optic disk as well as in FAZ area and

macular VD. A study concluded that VD was

decreased and vessel morphology was changed in

peripapillary area and these findings were correlated

with RNFL thinning in patients without DR [27]. In a

study by Kara et al., decreased VD in whole and

peripapillary area was shown [18]. In our study, we

observed that there was no significant difference

Table 2 Comparison of deep capillary plexus vessel density

between two groups

T1DM Group Control Group p

Whole image 53.71 ± 4.31 56.82 ± 4.54 0.001

Superior-Hemi 53.65 ± 4.45 56.29 ± 4.71 0.007

Inferior- Hemi 53.12 ± 4.39 57.41 ± 4.71 0.000

Fovea 38.16 ± 6.02 42.20 ± 5.54 0.001

Parafovea 55.64 ± 3.62 59.16 ± 3.65 0.000

Superior-Hemi 55.83 ± 3.53 59.51 ± 3.47 0.000

Inferior- Hemi 55.88 ± 3.41 58.83 ± 4.06 0.000

Temporal 56.47 ± 3.14 60.13 ± 3.40 0.000

Superior 55.30 ± 4.20 59.34 ± 3.60 0.000

Nasal 56.41 ± 3.45 59.34 ± 4.01 0.000

Inferior 55.27 ± 4.09 57.83 ± 5.49 0.01

Perifovea 55.33 ± 4.65 58.63 ± 4.82 0.001

Superior-Hemi 55.20 ± 4.66 58.27 ± 4.77 0.002

Inferior- Hemi 55.30 ± 4.90 57.65 ± 10.10 0.16

Temporal 56.28 ± 4.08 59.83 ± 3.79 0.000

Superior 55.11 ± 5.0 57.55 ± 5.21 0.02

Nasal 54.62 ± 5.19 58.13 ± 5.79 0.003

Inferior 54.96 ± 5.56 58.99 ± 5.63 0.001

T1DM Type 1 diabetes mellitus

Table 3 Comparison of optic disk radial peripapillary capil-

lary small vessel density

T1DM Group Control Group p

Whole image 49.08 ± 3.18 49.28 ± 1.99 0.57

Inside disk 54.87 ± 4.78 54.11 ± 3.77 0.40

Peripapillary 50.16 ± 3.46 50.66 ± 2.74 0.44

Superior-Hemi 50.06 ± 3.94 50.67 ± 2.92 0.40

Inferior- Hemi 50.25 ± 3.28 50.63 ± 3.01 0.56

T1DM Type 1 diabetes mellitus
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between the groups in terms of optic disk RPC-VD.

Consistent with our study, Li et al. reported no

significant difference between groups in VD of optic

disk center, inner and outer rings [10].

Glycated hemoglobin (HbA1c) is the most com-

monly used laboratory screening test in the diagnosis

and follow-up of diabetes mellitus. Older age, puberty,

female gender, increased body mass index, prolonged

Table 4 The correlation

between SCP and DCP

vessel density with disease

duration, mean HbA1c,

IGF-1 SDS, homocysteine,

BMI SDS and daily insulin

dose in diabetic group

DCP Deep capillary plexus,

SDS Standard deviation

score, SCP Superficial

capillary plexus

SCP DCP

Whole Parafovea Perifovea Whole Parafovea Perifovea

Disease duration r -0.21 -0.28 -0.18 -0.12 -0.12 -0.12

p 0.16 0.06 0.22 0.42 0.39 0.39

HbA1c r -0.42 -0.44 -0.38 -0.28 -0.16 -0.26

p 0.003 0.002 0.009 0.06 0.26 0.08

IGF-1 SDS r 0.41 0.36 0.43 0.27 0.24 0.24

p 0.005 0.01 0.003 0.06 0.10 0.09

Homocysteine r -0.06 -0.14 -0.07 -0.34 -0.31 -0.36

p 0.66 0.34 0.63 0.01 0.03 0.01

BMI SDS r 0.01 0.14 -0.008 -0.14 -0.001 -0.09

p 0.92 0.32 0.95 0.34 0.99 0.52

Daily insulin

dose

r 0.08 0.10 0.13 -0.007 0.03 -0.06

p 0.57 0.47 0.37 0.96 0.81 0.67

Fig. 1 Correlation between SCP vessel density and mean HbA1c in whole, parafovea and perifovea regions
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diabetes duration, high blood pressure, dyslipidemia

and family history of vascular complications are

described as other risk factors for retinopathy [28–34].

In this study, we evaluated disease duration, mean

HbA1c, IGF-1 SDS, Hcy level, BMI SDS and daily

insulin dose to better understand the physiopatholog-

ical mechanisms that lead the development of retinal

vascular changes in T1DM. Disease duration was no

effect on any of the OCTA parameters such as FAZ

area, macular VD and RPC-VD in both SCP and DCP.

Some other studies also revealed no correlation

between disease duration and FAZ area and VD

[7, 10]. Therefore, we suggest that other pathogenic

factors instead of disease duration may lead to

decrease in vascular density. On the contrary, some

studies have shown a negative correlation between

duration of disease and VD and FAZ area [8, 18]. We

found that while mean HbA1c had no effect on the

DCP, it was negatively correlated with the decrease in

the all regions of SCP-VD. Some recent studies also

showed that elevated HbA1c decreased the SCP-VD

[18, 23].

Insulin-like growth factor-1 is little peptide hor-

mone that has a critical role in growth and cellular

proliferation and binds to its own receptor as well as to

homologous insulin/IGF-1 hybrid receptors. IGF-1

and IGF binding proteins are expressed throughout the

retina in vascular, neuronal and glial cells, and are

altered in response to hyperglycemia and hypoxia

[35]. In a study conducted in patients with type 1

diabetes mellitus aged between 8 and 25 years, it was

stated that the severity of DR was inversely related to

serum IGF-1 levels and that low IGF-1 levels are an

indicator to be used in the closer follow-up of diabetic

retinopathy and strict management [36]. In our study,

there was a statistically significant positive correlation

between IGF-1 SDS and VD in SCP.

Homocysteine is an amino acid that has an inflam-

matory effect, activates proinflammatory signaling

pathways, increases reactive oxygen metabolites and

Fig. 2 Correlation between SCP vessel density and IGF-1 SDS in whole, parafovea and perifovea regions
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reduces the formation of glutathione peroxidase

[37–39]. It has been shown that these effects may

lead to endothelial dysfunction. As Hcy is used as a

biomarker in vitamin B12 deficiency; in some studies,

it has been shown to be a better marker of cardiovas-

cular risk than cholesterol [40]. Homocysteine level

increased in diabetic patients in the serum, vitreous

and retina. A study reported that Hcy is a biomarker

for screening of early DR and early detection of

patients at risk of developing DR and even may be

used as a therapeutic target for DR in the future [41]. In

a meta-analysis examining the relationship between

Hcy and type 1 diabetes, increased Hcy was found in

those with DR and nephropathy compared to those

without any complications [42]. We demonstrated a

statistically significant negative correlation between

Hcy level and DCP-VD in all macular regions.

According to our current knowledge, this is the first

study in the literature evaluating the effect of IGF-1

and Hcy level on vascular density measured by OCTA.

We concluded that BMI SDS and daily insulin dose

were not significantly correlated with vascular density.

Consistent with current study, it has been reported that

BMI was not associated with parafoveal vessel density

and the amount of basal insulin or insulin per breakfast

were not correlated with OCTA parameters [43, 44].

Major limitations of this study are as follows:

relatively small sample size, using 6 9 6 macular scan

for FAZ evaluation and lack of qualitative assessment

of microvascular structure. The main strength of this

study is evaluation of metabolic parameters such as

Hcy and IGF-1 which are biomarker for the progres-

sion of DR.

Conclusion

In summary, this study documents early macular

microvascular structure changes in children without

clinical visible DR, and OCTA is a valuable imaging

Fig. 3 Correlation between DCP vessel density and homocysteine level in whole, parafovea and perifovea regions
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technique for detecting early vascular changes.

Metabolic parameters such as mean HbA1c, IGF-1

and Hcy affect OCTA parameters. It may be beneficial

to closely follow diabetic children with elevated

HbA1c and Hcy levels and low IGF-1 levels in terms

of development of DR. Further studies are required to

fully understand the role of OCTA in the diagnosis of

early DR and the systemic risk factors predisposing to

the DR.
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