Advanced Search

Show simple item record

dc.contributor.authorBozkurt, Erhan
dc.contributor.authorAtay, Emre
dc.contributor.authorBilir, Abdulkadir
dc.contributor.authorErtekin, Ayşe
dc.contributor.authorKoca, Halit Buğra
dc.contributor.authorSabaner, Mehmet Cem
dc.identifier.citationBozkurt, E., Atay, E., Bilir, A., Ertekin, A., Koca, H. B., & Sabaner, M. C. (2021). A novel model of early type 1 diabetes mellitus: The chick embryo air sack model. Saudi Journal of Biological Sciences, 28(10), 5538-5546.en_US
dc.description.abstractDiabetes Mellitus (DM) is a metabolic disease characterized by hyperglycemia. Chronic hyperglycemia is associated with long-term dysfunction such as retinopathy, nephropathy, neuropathy and cardiovascular diseases. These complications increase rates of death and disability worldwide. Due to the negative effects of DM on the quality of life, the mechanism and treatments of the disease should be investigated in more detail. Most of the research in diabetes is performed in experimental animals. Experimental animal models contributed to the advancement of clinical research, the development of new therapeutic approaches, the discovery of insulin and the purification of insulin. There are many animal models of DM in the literature. But there are a few DM model studies created with chick embryos. In these studies, it was seen that there were differences in STZ doses and STZ administration techniques. The objective of this study was to create a more acceptable and easier DM model. 180 specific pathogen free (SPF) fertilized chicken eggs (White Leghorn chicken) were used in this study. STZ was administered to 160 SPF eggs for an induced DM model. The remaining 20 SPF eggs were separated as a control group. We used two different DM models (Air sack model (ASM) and Chorioallantoic membrane model (CAMM)) and blood sampling technique in our study. 160 SPF eggs were divided into two groups with 80 eggs in each group, according to the model in which STZ was administered. When the relationship between blood glucose and blood insulin levels were examined, it was determined that there was a significantly strong negative correlation in the control group and ASM 1 group; and a significantly very strong negative correlation was found in the ASM 2 group and ASM 3 group. Our data indicate that the optimal STZ dose to create a DM model was 0.45 mg/egg and the best DM model was ASM. The second technique to be the best blood sampling technique for determining blood glucose levels. We believe that ASM can be used in DM studies and anti-DM drug studies in terms of its easebly, applicability, reproducibility and low costen_US
dc.publisherKing Saud Universityen_US
dc.subjectAir sack modelen_US
dc.subjectChick embryoen_US
dc.subjectExperimental diabetes modelen_US
dc.titleA novel model of early type 1 diabetes mellitus: The chick embryo air sack modelen_US
dc.departmentAFSÜ, Tıp Fakültesi, Dahili Tıp Bilimleri Bölümü, İç Hastalıkları Ana Bilim Dalıen_US
dc.contributor.institutionauthorBozkurt, Erhan
dc.contributor.institutionauthorAtay, Emre
dc.contributor.institutionauthorBilir, Abdulkadir
dc.contributor.institutionauthorErtekin, Ayşe
dc.contributor.institutionauthorKoca, Halit Buğra
dc.relation.journalSaudi Journal of Biological Sciencesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record