Investigation of the Effect of 2,3-Dihydrobenzoic Acid Acid (2,3-DHBA) on the Lipid Profiles of MCF-7 and MDA-MB-231 Human Breast Cancer Cells via an Untargeted Lipidomic Approach
Özet
Breast cancer (BC) is a primary cause of cancer-related mortality in women, making the development of novel therapeutic strategies essential. Altered lipid metabolism is a recognized hallmark of cancer, presenting a key therapeutic vulnerability. This study investigated the cytotoxic effects of the natural phenolic compound 2,3-DHBA on MCF-7 (luminal A) and MDA-MB-231 (triple-negative) human breast cancer cells and characterized the associated changes in their lipid profiles via an untargeted lipidomic approach. The in vitro cytotoxicity of 2,3-DHBA was assessed using the MTT assay at 24, 48, and 72 h against both cancer cell lines and non-cancerous L-929 fibroblasts. Following treatment with the 48-h IC50 concentrations (8.61 mM for MCF-7, 5.84 mM for MDA-MB-231), total lipids were extracted and analyzed. The results showed that 2,3-DHBA exerted potent time- and dose-dependent cytotoxic effects against both BC cell lines, with significantly higher selectivity for cancer cells over healthy fibroblasts. The more aggressive MDA-MB-231 line exhibited greater sensitivity. The lipidomic analysis revealed that 2,3-DHBA induced profound cell-specific alterations across all major lipid classes, including fatty acids, glycerolipids (GLs), glycerophospholipids (GPs), and sphingolipids (SPs). These changes suggest a multi-pronged mechanism involving the disruption of membrane integrity through GP remodeling, the attenuation of survival signaling via the GL network, and a critical shift in the sphingolipid rheostat towards pro-apoptotic ceramide accumulation. This study establishes a direct link between the cytotoxic activity of 2,3-DHBA and its ability to comprehensively reprogram the cancer cell lipidome, highlighting its potential as a sophisticated metabolic modulator for breast cancer therapy.
















