RESEARCH ARTICLE

Wild mushrooms from Ilgaz Mountain National Park (Western Black Sea, Turkey): element concentrations and their health risk assessment

Feyyaz Keskin¹ · Cengiz Sarikurkcu² · Ahmet Demirak¹ · Ilgaz Akata³ · Arzuhan Sihoglu Tepe⁴

Received: 3 June 2021 / Accepted: 5 December 2021 / Published online: 11 January 2022 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

The purpose of this study was to determine Fe, Cd, Cr, Se, P, Cu, Mn, Zn, Al, Ca, Mg, and K contents of some edible (*Chlorophyllum rhacodes, Clavariadelphus truncatus, Clitocybe nebularis, Hydnum repandum, Hygrophorus pudorinus, Infundibulicybe gibba, Lactarius deliciosus, L. piperatus, L. salmonicolor, Macrolepiota mastoidea, Russula grata, Suillus granulatus, and Tricholoma imbricatum*), inedible (*Amanita pantherina, Geastrum triplex, Gloeophyllum sepiarium, Hypholoma fasciculare, Phellinus vorax, Pholiota limonella, Russula anthracina, and Tapinella atrotomentosa*), and poisonous mushroom species (*Amanita pantherina* and *Hypholoma fasciculare*) collected from Ilgaz Mountain National Park (Western Black Sea, Turkey). The element contents of the mushrooms were determined to be 18.0–1239.1, 0.2–4.6, 0.1–3.4, 0.2–3.2, 1.0–8.9, 3.3–59.9, 3.7–220.4, 21.3–154.1, 6.4–754.3, 15.8–17,473.0, 413.0–5943.0, and 2803.0–24,490.0 mg·kg⁻¹, respectively. In addition to metal contents, the daily intakes of metal (DIM) and Health Risk Index (HRI) values of edible mushrooms were also calculated. Both DIM and HRI values of mushroom species except *L. salmanicolor, M. mastoidea*, and *R. grata* were within the legal limits. However, it was determined that the Fe content of *L. salmanicolor* and *M. mastoidea* and Cd content of *R. grata* were above the legal limits.

Keywords Ilgaz Mountain · Edible mushrooms · Metal concentration · DIM · HRI

Introduction

Mushrooms are organisms that can grow both in uncontaminated rural ecosystems and in urban areas with high industrial pollution (Karaman et al. 2012; Rakic et al. 2014). They are important in terms of pharmaceuticals as well as their ecological values (Siric et al. 2016). Both

Responsible Editor: Philippe Garrigues

Cengiz Sarikurkcu sarikurkcu@gmail.com

- ¹ Environmental Problems Research and Application Center, Mugla Sitki Koçman University, TR-48000 Mugla, Turkey
- ² Faculty of Pharmacy, Department of Analytical Chemistry, Afyonkarahisar Health Sciences University, TR-03100 Afyonkarahisar, Turkey
- ³ Faculty of Science, Department of Biology, Ankara University, TR-06100 Ankara, Turkey
- ⁴ Department of Pharmacy Services, Kilis 7 Aralik University, Vocational High School of Health Services, TR-79000 Kilis, Turkey

wild and cultivated mushrooms have many beneficial compounds for human health. Since mushrooms are low-calorie foods, they are particularly preferred in diets. In addition, they are rich in vitamins, elements (both macro and microelements), and proteins (Gargano et al. 2017). Some mushroom species have therapeutic value due to their primary (e.g., polysaccharides and polysaccharide-protein complexes, etc.) and secondary metabolites (e.g., alkaloids, terpenoids, phenolic compounds, etc.) and are also known as medicinal mushrooms in the literature (De Silva et al. 2013; Duru and Cayan 2015; Gargano et al. 2017). Studies have shown that mushrooms have many biological/pharmacological activities (such as neuroprotective, cardiovascular, antioxidant, antimicrobial, antitumor, etc.). These activities are thought to be due to compounds that they contain (Gargano et al. 2017; Paterson and Lima 2014; Phan et al. 2015; Plassard et al. 2011). Therefore, it is thought that mushrooms have a high potential to be used in the treatment of some diseases such as cancer, obesity, hypertension, and hyperglycemia, which threaten human beings and have a high prevalence (Guggenheim et al. 2014; Guillamon et al. 2010).

In addition to the benefits mentioned above, fungi are also responsible for the cycle of elements in nature, as they also fulfill the functions of breaking down organic materials (Sesli et al. 2008). With the increasing interest of humans in wild mushroom species due to their nutritional properties, researchers have started to focus on whether the concentrations of elements accumulated in these organisms pose a risk to human health (Abdel-Azeem et al. 2007; Campos et al. 2009; Isildak et al. 2004; Joshi et al. 2011; Kalac and Svoboda 2000; Mleczek et al. 2016a; Severoglu et al. 2013; Siric et al. 2016). Some mushroom species can accumulate certain metals at higher concentrations than other organisms living in the same ecosystem (Dogan et al. 2006; Falandysz et al. 2008; Huang et al. 2015; Kalac 2010; Rakic et al. 2014; Sesli et al. 2008; Severoglu et al. 2013; Siric et al. 2016). The biosorption of elements by mushroom species is a well-known mechanism studied by many researchers (Mleczek et al. 2016a: Sesli and Dalman 2006: Sesli et al. 2008). When toxic metals and metalloids such as Hg, Pb, Cd, As, etc. accumulate in fruiting bodies of mushrooms at high concentrations, people who feed on these mushrooms can also accumulate them in their bodies. In this way, these metals can cause various adverse effects on human metabolism (Falandysz and Borovicka 2013; Mleczek et al. 2016b; Rubio et al. 2018; Rzymski et al. 2016). This makes controlling the toxic element content of wild mushroom species a priority issue (Agrawal and Dhanasekaran 2019; Rashid et al. 2018). High metal accumulation in mushrooms is also under the scrutiny of researchers as they are indicators of metal pollution in the ecosystem as well as their negative effects on human health (Li et al. 2017).

Wild mushroom species can be classified as edible, inedible (poisonous), soil-grown, wood-grown, parasitic or saprophytic, etc.. These differences in the way of life of mushrooms have a major impact on their metal accumulation capacity (Kalac 2010; Mleczek et al. 2016a). In addition, areas where mushroom species grow provide important clues in environmental researches in terms of metal accumulation (Kalac 2001; Rakic et al. 2014; Siric et al. 2016).

The purpose of this study was to determine Fe, Cd, Cr, Se, P, Cu, Mn, Zn, Al, Ca, Mg, and K contents of some edible (*Chlorophyllum rhacodes*, *Clavariadelphus truncatus*, *Clitocybe nebularis*, *Hydnum repandum*, *Hygrophorus pudorinus*, *Infundibulicybe gibba*, *Lactarius deliciosus*, *L. piperatus*, *L. salmonicolor*, *Macrolepiota mastoidea*, *Russula grata*, *Suillus granulatus*, and *Tricholoma imbricatum*), inedible (*Amanita pantherina*, *Geastrum triplex*, *Gloeophyllum sepiarium*, *Hypholoma fasciculare*, *Phellinus vorax*, *Pholiota limonella*, *Russula anthracina*, and *Tapinella atrotomentosa*), and poisonous mushroom species (*Amanita pantherina* and *Hypholoma fasciculare*) collected from Ilgaz Mountain National Park (Western Black Sea, Turkey). In addition, the daily intakes of metal (DIM) and Health Risk Index (HRI) values of edible mushroom species were also calculated, and their potential effects on human health were discussed.

Materials and methods

Collection, identification, digestion, and elemental analysis of mushroom species

Fully matured fruiting bodies of mushrooms were collected between October 20 and 21, 2019 from Ilgaz Mountain National Park, Western Black Sea, Turkey (1730 m., 11° 04' N 33° 42' E).

Information on the habitats and taxonomic records of mushroom species are given in Table 1. Experimental details on the digestion processes of mushroom species and determination of metal content can be found in the supplementary file (Sarikurkcu et al. 2020, 2011, 2015, 2012).

Determination of DIM and HRI values

DIM and HRI analyses of mushrooms were performed following the method given in the literature (Cui et al. 2004; Liu et al. 2015). While calculating DIM values of which details were also given in the supplementary file, $R_f D^o$ values set by USEPA (2002) were taken into consideration.

Statistical analyses

Detailed information on the statistical analysis applied on the data obtained from this study was given in the supplementary file.

Results and discussion

Information about the taxonomic details, substrates, and edibility of the mushroom species analyzed in this study are given in Table 1. The concentrations of Fe, Cd, Cr, Se, P, Cu, Mn, Zn, Al, Ca, Mg, and K of mushrooms are presented in Tables 2 and 3 (in mg·kg⁻¹ dry weight). Additionally, DIM and HRI values of edible mushrooms were calculated and documented in Table 4. In order to make comparison with the data obtained from the present study, a literature table containing the metal contents of the analyzed mushroom species was also created (Table 5).

No reports on the elemental contents of *G. triplex, G. separium, H. repandum, H. pudorinus, P. vorax, P. limo-nella, R. anthracina*, and *R. grata* could be found on the literature search. In addition, P content of *A. pantherina*; P and K contents of *C. rhacodes*; Cr and Se contents of *C. truncatus*; Fe, Cr, Se, P, Mn, Al, Ca, Mg, and K contents

Table 1 Families, habitats, substrates, edibility, and herbarium numbers of wild mushroom species

No	Mushrooms	Family	Herbarium No	Habitat	Substrat	Edibility
1	A. pantherina (DC.) Krombh	Amanitaceae	Akata 7254	Fir forest	On soil	Poisonous
2	C. rhacodes (Vittad.) Vellinga	Agaricaceae	Akata 7241	Fir forest	On soil	Edible
3	C. truncatus Donk	Clavariadelphaceae	Akata 7229	Fir forest	On soil	Edible
4	C. nebularis (Batsch) P. Kumm	Tricholomataceae	Akata 7231	Fir forest	On soil	Edible
5	G. triplex Jungh	Geastraceae	Akata 7230	Fir forest	On soil	Inedible
6	G. sepiarium (Wulfen) P. Karst	Gloeophyllaceae	Akata 7234	Fir forest	On fir stump	Inedible
7	H. repandum L	Hydnaceae	Akata 7242	Fir forest	On soil	Edible
8	H. pudorinus (Fr.) Fr	Hygrophoraceae	Akata 7249	Fir forest	On soil	Edible
9	H. fasciculare (Huds.) P. Kumm	Strophariaceae	Akata 7243	Fir forest	On fir stump	Poisonous
10	I. gibba (Pers.) Harmaja	Tricholomataceae	Akata 7248	Oak forest	On soil	Edible
11	L. deliciosus (L.) Gray	Russulaceae	Akata 7238	Pine forest	On soil	Edible
12	L. piperatus (L.) Pers	Russulaceae	Akata 7233	Oak forest	On soil	Edible
13	L. salmonicolor R. Heim & Leclair	Russulaceae	Akata 7235	Fir forest	On soil	Edible
14	M. mastoidea (Fr.) Singer	Agaricaceae	Akata 7236	Fir forest	On soil	Edible
15	P. vorax Harkn. ex Černý	Hymenochaetaceae	Akata 7225	Fine forest	On pine trunk	Inedible
16	P. limonella (Peck) Sacc	Strophariaceae	Akata 7246	Fir forest	On fir stump	Inedible
17	R. anthracina Romagn	Russulaceae	Akata 7226	Fir forest	On soil	Inedible
18	R. grata Britzelm	Russulaceae	Akata 7239	Oak forest	On soil	Edible
19	S. granulatus (L.) Roussel	Suillaceae	Akata 7244	Pine forest	On soil	Edible
20	T. atrotomentosa (Batsch) Šutara	Tapinellaceae	Akata 7227	Fir forest	On fir stump	Inedible
21	T. imbricatum (Fr.) P. Kumm	Tricholomataceae	Akata 7232	Pine forest	On soil	Edible

Table 2 Fe, Cd, Cr, Se, P, and Cu concentrations of wild mushroom species (mg·kg⁻¹ dry weight)

No	Mushrooms	Fe	Cd	Cr	Se	Р	Cu
1	A. pantherina	57.3 ± 0.6^{d}	0.74 ± 0.04^{c}	nd	0.37 ± 0.16^{a}	4.93 ± 0.04^{k}	13.27 ± 0.09^{g}
2	C. rhacodes	215.9 ± 1.0^{l}	0.28 ± 0.08^a	0.16 ± 0.07^{ab}	3.22 ± 0.42^c	8.90 ± 0.01^p	59.87 ± 0.33^u
3	C. truncatus	75.3 ± 0.2^{f}	0.53 ± 0.05^{b}	nd	0.29 ± 0.01^a	2.22 ± 0.02^c	33.67 ± 0.28^{s}
4	C. nebularis	133.1 ± 0.3^{k}	0.89 ± 0.11^{cde}	0.05 ± 0.03^a	0.75 ± 0.25^a	8.22 ± 0.05^n	32.44 ± 0.24^r
5	G. triplex	81.2 ± 0.3^{g}	2.55 ± 0.07^f	0.05 ± 0.03^a	1.91 ± 0.16^b	6.71 ± 0.06^{l}	44.29 ± 0.27^t
6	G. sepiarium	363.0 ± 1.5^{n}	0.17 ± 0.05^a	0.68 ± 0.21 ^{cd}	0.81 ± 0.11^a	1.04 ± 0.02^a	10.46 ± 0.06^{f}
7	H. repandum	42.1 ± 0.3^{c}	nd	0.22 ± 0.04^{ab}	0.65 ± 0.34^{a}	3.71 ± 0.03^{h}	14.37 ± 0.09^{h}
8	H. pudorinus	64.4 ± 0.5^{e}	nd	0.93 ± 0.09^{de}	0.58 ± 0.10^a	3.96 ± 0.04^{i}	3.27 ± 0.02^a
9	H. fasciculare	112.9 ± 0.7^i	0.95 ± 0.06^{de}	nd	0.28 ± 0.15^a	3.51 ± 0.04^{g}	17.87 ± 0.05^{k}
10	I. gibba	83.0 ± 0.2^{g}	0.76 ± 0.02^{cd}	0.25 ± 0.12^{ab}	0.41 ± 0.17^a	7.99 ± 0.10^{m}	30.99 ± 0.21^p
11	L. deliciosus	44.2 ± 0.3^{c}	0.91 ± 0.05^{cde}	nd	0.90 ± 0.19^a	4.04 ± 0.02^i	6.04 ± 0.10^d
12	L. piperatus	36.2 ± 0.2^b	0.92 ± 0.06^{cde}	nd	1.06 ± 0.01^{ab}	2.63 ± 0.01^d	27.05 ± 0.15^o
13	L. salmonicolor	862.6 ± 2.6^{r}	0.17 ± 0.04^a	3.36 ± 0.11^{g}	0.21 ± 0.10^a	3.12 ± 0.02^f	7.54 ± 0.07^e
14	M. mastoidea	811.1 ± 2.7^{p}	0.82 ± 0.07^{cde}	1.23 ± 0.10^e	1.06 ± 0.32^{ab}	8.48 ± 0.08^o	25.57 ± 0.11^{m}
15	P. vorax	1239.1 ± 2.8 ^s	3.52 ± 0.03^{g}	1.79 ± 0.07^f	0.46 ± 0.17^a	nd	21.09 ± 0.08^{l}
16	P. limonella	18.0 ± 0.1^{a}	0.31 ± 0.03^{a}	nd	0.34 ± 0.08^a	2.23 ± 0.04^c	6.02 ± 0.08^d
17	R. anthracina	66.0 ± 0.1^{e}	1.00 ± 0.04^e	nd	0.36 ± 0.23^{a}	1.48 ± 0.03^b	16.22 ± 0.10^i
18	R. grata	$664.7 \pm 1.1^{\circ}$	4.56 ± 0.14^{h}	$0.65 \pm 0.03^{\ cd}$	0.33 ± 0.04^{a}	4.09 ± 0.07^i	26.51 ± 0.16^{n}
19	S. granulatus	246.2 ± 0.8^{m}	nd	0.21 ± 0.04^{ab}	0.61 ± 0.10^{a}	2.55 ± 0.03^d	7.22 ± 0.04^e
20	T. atrotomentosa	20.5 ± 0.2^a	nd	0.44 ± 0.11^{bc}	0.82 ± 0.67^a	3.05 ± 0.02^f	4.32 ± 0.03^c
21	T. imbricatum	102.7 ± 0.3^{h}	0.15 ± 0.01^a	0.11 ± 0.06^a	0.74 ± 0.03^a	2.83 ± 0.01^e	3.79 ± 0.07^b

The values indicated by different superscripts within the same columns of Table 2 shows significant difference at p < 0.05

Table 3	Mn, Zn, Al,	Ca, Mg, and K	concentrations of	wild mushroom	species	(mg·kg ⁻¹	dry	weight)
---------	-------------	---------------	-------------------	---------------	---------	----------------------	-----	---------

No	Mushrooms	Mn	Zn	Al	Ca	Mg	K
1	A. pantherina	11.13 ± 0.06^{e}	116.9 ± 1.9^{p}	59.8 ± 0.4^{gh}	45.8 ± 1.1^{b}	777 ± 4^{h}	$24,490 \pm 136^{s}$
2	C. rhacodes	33.16 ± 0.15^{n}	154.1 ± 0.8^{s}	148.0 ± 0.6^{l}	324.5 ± 0.7^{g}	1108 ± 3^{o}	$15,592 \pm 17^{i}$
3	C. truncatus	3.69 ± 0.03^{a}	120.9 ± 0.8^{r}	22.0 ± 0.2 ^{cd}	172.3 ± 1.8^{f}	567 ± 1^d	$22,614 \pm 46^{r}$
4	C. nebularis	19.20 ± 0.16^{l}	80.1 ± 0.5^{m}	58.6 ± 0.6^{gh}	93.1 ± 0.8^{c}	827 ± 3^{kl}	$13,058 \pm 41^{i}$
5	G. triplex	220.44 ± 0.82^{s}	102.7 ± 0.3^{n}	62.5 ± 0.7^{h}	1946.8 ± 9.6^{m}	1484 ± 7^{r}	7943 ± 46^{d}
6	G. sepiarium	65.99 ± 0.44^{p}	42.3 ± 0.6^d	296.5 ± 2.0^{m}	7180.2 ± 35.1^{n}	899 ± 4^{m}	2803 ± 9^a
7	H. repandum	10.44 ± 0.05^{e}	45.7 ± 0.3^{e}	18.9 ± 0.1^{c}	138.9 ± 0.9^{de}	524 ± 2^c	$20,504 \pm 12^{o}$
8	H. pudorinus	12.91 ± 0.11^{fg}	30.6 ± 0.2^{c}	54.5 ± 0.3^{g}	15.8 ± 1.5^a	833 ± 6^{l}	$15,690 \pm 87^{l}$
9	H. fasciculare	7.87 ± 0.06^d	59.9 ± 0.8^{h}	29.0 ± 0.3^{e}	165.5 ± 1.7^{ef}	639 ± 5^e	15,535 ± 91 ¹
10	I. gibba	16.28 ± 0.09^i	74.3 ± 1.0^{l}	12.9 ± 0.1^b	52.6 ± 0.3^{b}	674 ± 1^{g}	9439 ± 8^{e}
11	L. deliciosus	14.75 ± 0.07^{h}	$110.2 \pm 1.0^{\circ}$	23.5 ± 0.4^{cd}	92.5 ± 0.4^{c}	820 ± 3^{k}	9359 ± 23^{e}
12	L. piperatus	5.23 ± 0.04^b	71.7 ± 0.7^{k}	27.0 ± 0.3^{de}	38.8 ± 0.7^{ab}	427 ± 1^{b}	$11,335 \pm 38^{g}$
13	L. salmonicolor	17.56 ± 0.13^{k}	57.2 ± 0.3^{g}	505.8 ± 3.8^n	534.6 ± 1.3^{k}	1001 ± 2^{n}	$11,244 \pm 30^{g}$
14	M. mastoidea	31.12 ± 0.20^{m}	60.6 ± 0.3^{h}	636.8 ± 3.5^p	770.1 ± 3.8^{l}	1229 ± 7^p	$13,716 \pm 61^{k}$
15	P. vorax	45.25 ± 0.09^o	21.3 ± 0.1^a	754.3 ± 1.9^r	$17,472.9 \pm 20.1^{o}$	5943 ± 4^{s}	3760 ± 4^b
16	P. limonella	13.21 ± 0.08^{g}	30.5 ± 0.2^{c}	9.8 ± 0.1^{ab}	116.2 ± 1.2^{cd}	806 ± 1^i	$21,716 \pm 15^{p}$
17	R. anthracina	6.41 ± 0.03^{c}	30.4 ± 0.2^{c}	41.6 ± 0.4^{f}	112.0 ± 0.7 ^{cd}	562 ± 1^d	$12,289 \pm 18^{h}$
18	R. grata	82.50 ± 0.71^{r}	65.7 ± 0.7^i	$602.3 \pm 4.7^{\circ}$	453.0 ± 0.1^{i}	887 ± 1^{m}	$17,680 \pm 6^n$
19	S. granulatus	12.07 ± 0.05^{f}	42.3 ± 0.1^d	123.9 ± 1.1^{k}	378.7 ± 2.0^{h}	413 ± 2^a	$10,286 \pm 39^{f}$
20	T. atrotomentosa	4.31 ± 0.04^{a}	23.4 ± 0.1^b	6.4 ± 0.2^{a}	110.2 ± 1.4^{c}	659 ± 2^{f}	4957 ± 12^c
21	T. imbricatum	12.67 ± 0.05^{fg}	48.1 ± 0.3^{f}	86.9 ± 0.3^i	110.3 ± 1.1^{c}	805 ± 2^i	$16,247 \pm 52^{m}$

The values indicated by different superscripts within the same columns of Table 3 shows significant difference at p < 0.05

Edible mushrooms	DIM (µg/kg body weight/serving)			HRI								
	Cd	Cr	Cu	Fe	Mn	Zn	Cd	Cr	Cu	Fe	Mn	Zn
C. rhacodes	0.12	0.07	25.66	92.52	14.21	66.04	0.12	0.02	0.64	0.31	0.10	0.22
C. truncatus	0.23	nd	14.43	32.26	1.58	51.83	0.23	nd	0.36	0.11	0.01	0.17
C. nebularis	0.38	0.02	13.90	57.06	8.23	34.33	0.38	0.01	0.35	0.19	0.06	0.11
H. repandum	nd^4	0.10	6.16	18.05	4.47	19.59	nd	0.03	0.15	0.06	0.03	0.07
H. pudorinus	nd	0.40	1.40	27.60	5.53	13.11	nd	0.13	0.04	0.09	0.04	0.04
I. gibba	0.33	0.11	13.28	35.56	6.98	31.85	0.33	0.04	0.33	0.12	0.05	0.11
L. deliciosus	0.39	nd	2.59	18.95	6.32	47.24	0.39	nd	0.06	0.06	0.05	0.16
L. piperatus	0.39	nd	11.59	15.52	2.24	30.71	0.39	nd	0.29	0.05	0.02	0.10
L. salmonicolor	0.07	1.44	3.23	369.67	7.53	24.52	0.07	0.48	0.08	1.23	0.05	0.08
M. mastoidea	0.35	0.53	10.96	347.61	13.34	25.96	0.35	0.18	0.27	1.16	0.10	0.09
R. grata	1.95	0.28	11.36	284.85	35.36	28.15	1.95	0.09	0.28	0.95	0.25	0.09
S. granulatus	nd	0.09	3.09	105.50	5.17	18.11	nd	0.03	0.08	0.35	0.04	0.06
T. imbricatum	0.07	0.05	1.62	44.03	5.43	20.60	0.07	0.02	0.04	0.15	0.04	0.07
R _f D ^{o 1} (μg/kg body weight/day)	1.0 ³	3.0 ³	40 ³	300 ²	140 ³	300 ³						

 1 R_fD^o, reference dose

²JECFA (1993)

³USEPA (2002)

⁴ nd, not determined

of *C. nebularis*; Se and P contents of *H. repandum*; P and Ca contents of *H. fasciculare*; Cr, Se, P, Al, Ca, Mg, and K

contents of *I. gibba*; Ca content of *L. salmanicolor*; Se, P, Ca, Mg, and K contents of *M. mastoidea*; Se, Al, and Mg

Table 4DIM and HRI of wildedible mushroom species

Table 5	Literature data on					
metal content of mushrooms						
examined in this study						

Metal	Concentration (mg·kg ⁻¹)	Reference
A. pantherina		
Fe	0.45	Rasalanavho et al. 2020
	95.00	Sesli 2007
	985.00	Tuzen et al. 2007
	3690.70	Murati et al. 2015
	9455.20	Murati et al. 2015
Cd	0.05	Murati et al. 2015
	0.17	Murati et al. 2015
	0.80	Rasalanavho et al. 2020
	1.60	Tuzen et al. 2007
	1.77	Rasalanavho et al. 2020
Cr	0.08	Rasalanavho et al. 2020
	2.48	Rasalanavho et al. 2020
Se	7.30	Rasalanavho et al. 2020
	10.80	Tuzen et al. 2007
	11.00	Rasalanavho et al. 2019
	12.00	Rasalanavho et al. 2020
Р	-	-
Cu	3.00	Murati et al. 2015
	19.70	Tuzen et al. 2007
	23.70	Murati et al. 2015
	36.40	Sesli 2007
	48.62	Rasalanavho et al. 2020
	60.00	Rasalanavho et al. 2019
	70.65	Rasalanavho et al. 2020
Mn	14.42	Rasalanavho et al. 2020
	19.00	Rasalanavho et al. 2019
	19.50	Sesli 2007
	29.23	Rasalanavho et al. 2020
	53.50	Tuzen et al. 2007
	54.50	Murati et al. 2015
	177.40	Murati et al. 2015
Zn	10.00	Murati et al. 2015
	30.70	Sesli 2007
	43.20	Murati et al. 2015
	73.50	Tuzen et al. 2007
	94.45	Rasalanavho et al. 2020
	130.00	Rasalanavho et al. 2019
	212.53	Rasalanavho et al. 2020
Al	116.00	Sesli 2007
Ca	149.48	Rasalanavho et al. 2020
	334.11	Rasalanavho et al. 2020
Mg	0.98	Rasalanavho et al. 2020
	1.37	Rasalanavho et al. 2020
Κ	53.54	Rasalanavho et al. 2020
	71.08	Rasalanavho et al. 2020
C. rhacodes		
Fe	33.70	Šíma et al. 2019
Cd	0.49	Šíma et al. 2019
Cr	0.08	Šíma et al. 2019
Se	1.50	Šíma et al. 2019
Р	-	-
Cu	85.60	Šíma et al. 2019
Mn	84.60	Šíma et al. 2019

Table 5 (continued)

Metal	Concentration (mg·kg ⁻¹)	Reference
Zn	127.00	Šíma et al. 2019
Al	27.40	Šíma et al. 2019
Ca	264.00	Šíma et al. 2019
Mg	903.00	Šíma et al. 2019
К	-	-
C. truncatus		
Fe	236.00	Gaso et al. 2007
	245.00	Gaso et al. 2007
	655.00	Sesli and Dalman 2006
Cd	2.00	Gaso et al. 2007
	2.20	Sesli and Dalman 2006
Cr	-	-
Se	-	-
Р	3.00	Gaso et al. 2007
	4.00	Gaso et al. 2007
Cu	90.20	Sesli and Dalman 2006
	98.00	Gaso et al. 2007
	99.00	Gaso et al. 2007
Mn	10.00	Gaso et al. 2007
	20.00	Gaso et al. 2007
	60.90	Sesli and Dalman 2006
Zn	125.00	Sesli and Dalman 2006
	130.00	Gaso et al. 2007
	132.00	Gaso et al. 2007
Al	0.70	Gaso et al. 2007
	0.80	Gaso et al. 2007
Ca	1.00	Gaso et al. 2007
Mg	0.60	Gaso et al. 2007
	0.70	Gaso et al. 2007
K	35.00	Gaso et al. 2007
	38.00	Gaso et al. 2007
C. nebularis		
Fe	-	-
Cd	1.16	Jamnická et al. 2007
	2.19	Jamnická et al. 2007
Cr	-	-
Se	-	-
Р	-	-
Cu	21.39	Jamnická et al. 2007
	34.10	Jamnická et al. 2007
Mn	-	-
Zn	60.05	Jamnická et al. 2007
	101.13	Jamnická et al. 2007
Al	-	-
Ca	-	-
Mg	-	-
K	-	-
G. triplex		

Table 5 (continued)

Metal	Concentration (mg·kg ⁻¹)	Reference
No literature data available		
G. sepiarium		
No literature data available		
H. repandum		
Fe	2.12	Jedidi et al. 2017
	33.50	Demirbaş 2001a
	50.00	Colak et al. 2009
	50.06	Severoglu et al. 2013
	72.50	Tüzen et al. 1998
	265.00	Sesli and Tuzen 2006
	317.00	Ouzouni et al. 2007
	700.00	Sesli and Dalman 2006
Cd	0.11	Severoglu et al. 2013
	0.21	Ouzouni et al. 2007
	0.25	Sesli and Tuzen 2006
	0.76	Demirbaş 2001a
	3.08	Demirbas 2000
	3.42	Tüzen et al. 1998
	7.50	Sesli and Dalman 2006
Cr	1.58	Ouzouni et al. 2007
	1.68	Demirbaş 2001a
Se	-	-
Р	-	-
Cu	2.08	Severoglu et al. 2013
	2.76	Jedidi et al. 2017
	5.15	Tüzen et al. 1998
	6.84	Demirbaş 2001a
	18.09	Demirbas 2000
	20.00	Colak et al. 2009
	24.20	Sesli and Dalman 2006
	24.30	Ouzouni et al. 2007
	35.38	Alonso et al. 2003
	42.83	Alonso et al. 2003
	46.40	Sesli and Tuzen 2006
Mn	3.12	Demirbaş 2001a
	14.80	Sesli and Dalman 2006
	15.30	Sesli and Tuzen 2006
	21.60	Tüzen et al. 1998
	23.50	Colak et al. 2009
	26.30	Ouzouni et al. 2007
Zn	2.03	Severoglu et al. 2013
	3.82	Jedidi et al. 2017
	14.10	Demirbaş 2001a
	17.10	Tüzen et al. 1998
	30.00	Alonso et al. 2003
	35.90	Ouzouni et al. 2007
	52.50	Alonso et al. 2003
	55.00	Colak et al. 2009
	74.20	Sesli and Tuzen 2006
	103.00	Sesli and Dalman 2006
Al	12.50	Demirbaş 2001a
Ca	68.50	Demirbaş 2001a

Table 5 (continued)

Metal	Concentration (mg·kg ⁻¹)	Reference
Mg	1030.00	Demirbaş 2001a
K	36,000.00	Demirbaş 2001a
H. pudorinus		
No literature data available		
H. fasciculare		
Fe	55.60	Tüzen et al. 1998
	106.00	Gramss and Voigt 2013
	126.00	Gramss and Voigt 2013
	229.50	Radulescu et al. 2010
	241.01	Murati et al. 2019
	423.00	Demirbaş 2001a
	674.00	Sesli et al. 2008
	800.00	Sesli and Dalman 2006
Cd	0.14	Gramss and Voigt 2013
	0.21	Gramss and Voigt 2013
	0.35	Radulescu et al. 2010
	0.63	Murati et al. 2019
	1.28	Demirbas 2001a
	1.34	Tüzen et al. 1998
	1.36	Demirbas 2001b
	2.40	Sesli and Dalman 2006
Cr	0.06	Radulescu et al. 2010
	0.11	Gramss and Voigt 2013
	0.22	Gramss and Voigt 2013
	0.74	Demirbas 2001a
Se	1.16	Radulescu et al. 2010
	12.00	Rasalanavho et al. 2019
Р	_	-
Cu	5.56	Tüzen et al. 1998
	9.67	Radulescu et al. 2010
	11.50	Demirbas 2001b
	21.40	Gramss and Voigt 2013
	22.18	Murati et al. 2019
	25.80	Sesli et al. 2008
	25.90	Sesli and Dalman 2006
	36.60	Gramss and Voigt 2013
	40.00	Rasalanavho et al. 2019
	72.60	Demirbas 2001a
Mn	2.98	Radulescu et al. 2010
	6.00	Tüzen et al. 1998
	7.75	Gramss and Voigt 2013
	12.60	Demirbaş 2001b
	23.90	Gramss and Voigt 2013
	24.00	Rasalanavho et al. 2019
	33.61	Murati et al. 2019
	44.80	Demirbas 2001a
	46.30	Sesli and Dalman 2006
	51 50	Sesli et al. 2008/
	51.50	50011 of ul. 2000/

31931

Table 5 (continued)	Metal	Concentration (mg·kg ⁻¹)	Reference
	Zn	17.90	Tüzen et al. 1998
		19.60	Demirbaş 2001b
		33.30	Gramss and Voigt 2013
		34.12	Murati et al. 2019
		37.90	Gramss and Voigt 2013
		65.40	Demirbaş 2001a
		86.00	Rasalanavho et al. 2019
		86.40	Radulescu et al. 2010
		150.00	Sesli and Dalman 2006
		169.00	Sesli et al. 2008
	Al	17.50	Demirbaş 2001a
		27.30	Sesli et al. 2008
		39.50	Gramss and Voigt 2013
		74.00	Gramss and Voigt 2013
	Ca	-	-
	Mg	162.20	Sesli et al. 2008
	K	59,406.00	Sesli et al. 2008
	I. gibba		
	Fe	7769.00	Sarikurkcu et al. 2020
	Cd	0.74	Sarikurkcu et al. 2020
	Cr	-	-
	Se	_	-
	Р	_	-
	Cu	34.70	Sarikurkcu et al. 2020
	Mn	673.00	Sarikurkcu et al. 2020
	Zn	25.10	Sarikurkcu et al. 2020
	Al	-	-
	Ca	-	-
	Mg	-	-
	K	-	-
	L. deliciosus		
	Fe	0.04	Rasalanavho et al. 2020
		0.08	Rasalanavho et al. 2020
		2.39	Jedidi et al. 2017
		7.60	Konuk et al. 2007
		10.90	Rubio et al. 2018
		26.91	Severoglu et al. 2013
		29.80	Aloupi et al. 2012
		132.60	Mleczek et al. 2013b
		197.01	Xu et al. 2019
		216.83	Kosanic et al. 2016
		222.00	Carvalho et al. 2005
		253.00	Gezer and Kaygusuz 2014
		900.00	Sesli and Dalman 2006

Table 5

(continued)	Metal	Concentration (mg·kg ⁻¹)	Reference
	Cd	0.01	Rubio et al. 2018
		0.01	Severoglu et al. 2013
		0.15	Aloupi et al. 2012
		0.26	Cayir et al. 2010
		0.30	Konuk et al. 2007
		0.54	Kosanic et al. 2016
		0.54	
		0.78	Rasalanavho et al. 2020
		0.89	Cayir et al. 2010
		1.15	Rasalanavho et al. 2020
		1.91	Xu et al. 2019
		2.15	Gezer and Kaygusuz 2014
		2.37	Mleczek et al. 2013a
	Cr	0.04	Aloupi et al. 2012
		0.12	Cayir et al. 2010
		0.15	Rasalanavho et al. 2020
		0.16	Rubio et al. 2018
		0.36	Konuk et al. 2007
		0.72	Gezer and Kaygusuz 2014
		0.80	Cayir et al. 2010
		1.00	Severoglu et al. 2013
		1.11	Kosanic et al. 2016
		2.35	Rasalanavho et al. 2020
		3.88	Vetter 1997
		4.02	Xu et al. 2019
		5.14	Vetter 1997
		13.20	Campos and Tejera 2011
	Se	0.13	Konuk et al. 2007
		8.50	Rasalanavho et al. 2020
		11.00	Rasalanavho et al. 2019
		12.50	Rasalanavho et al. 2020
	Р	52.00	Konuk et al. 2007
	Cu	0.02	Konuk et al. 2007
		1.28	Xu et al. 2019
		1.64	Rubio et al. 2018
		1.91	Severoglu et al. 2013
		5.40	Campos and Tejera 2011
		5.57	Cayir et al. 2010
		6.82	Cayir et al. 2010
		6.90	Aloupi et al. 2012
		11.00	Carvalho et al. 2005
		11.86	Jedidi et al. 2017
		14.30	Mleczek et al. 2013a
		14.85	Rasalanavho et al. 2020
		15.49	Kosanic et al. 2016
		20.00	Rasalanavho et al. 2019
		22.14	Rasalanavho et al. 2020
		56.10	Gezer and Kaygusuz 2014
		75.60	Sesli and Dalman 2006

Table 5

Mn 0.36 Konak et al. 2007 3.85 Rasikansho et al. 2012 5.70 Aloupi et al. 2012 5.78 Kostic cal. 2016 6.00 Rasakansho et al. 2019 11.91 Rasikansho et al. 2020 23.12 Xu et al. 2019 24.00 Carvahot et al. 2015 30.20 Micrack et al. 2015 30.20 Micrack et al. 2017 23.2 Rabin and Dahum. 2016 46.60 Solit and Dahum. 2016 2.0 0.56 Kousk et al. 2013 2.40 Seering and Dahum. 2016 2.32 Rabin et al. 2017 2.35 Sesti and Dahum. 2016 5.2.34 Xu et al. 2017 2.3.50 Sesti and Dahum. 2016 5.2.34 Xu et al. 2019 9.9.37 Rasakanoho et al. 2020 66.80 Caruper and Tepera 2011 7.40 Jeddit et al. 2017 2.350 Sesti and Dahum. 2016 5.2.34 Xu et al. 2019 10.10 Aloupi et al. 2010 8.1.10	(continued)	Metal	Concentration (mg·kg ⁻¹)	Reference
3.85Rasalanavho et al. 20205.70Abonji et al. 20125.70Kosanic et al. 20195.70Rasalanavho et al. 20206.00Rasalanavho et al. 202023.12Xu et al. 201924.00Carvalho et al. 202030.20Micecak et al. 2013530.20Sesti and Dalman 200630.20Sesti and Dalman 200630.20Sesti and Dalman 200623.12Rabio et al. 201723.23Rabio et al. 201723.24Severgite et al. 20137.40Severgite et al. 20137.40Severgite et al. 20137.40Severgite et al. 20137.40Severgite et al. 20147.40Severgite et al. 201523.50Seis and Dalman 200652.34Xu et al. 201939.37Rasalanavho et al. 20167.40Carvalhor et al. 20168.10Abungit et al. 20128.10Abungit et al. 20128.10Abungit et al. 20128.10Abungit et al. 201413.52Capit et al. 201614.20Gorer and Kayayayayaya15.33Rasalanavho et et al. 201515.353Rasalanavho et al. 201614.20Gorer and Kayayayayaya14.338Kumk et al. 201715.353Rasalanavho et al. 201614.200Gorer and Kayayayayayaya14.338Kumk et al. 201715.353Rasalanavho et al. 201614.200Carva et al. 201715.354Rasalanavho et al. 2020		Mn	0.36	Konuk et al. 2007
 Abaşî et al. 2012 5.80 Kosanic et al. 2016 6.00 Rasilanarbo et al. 2020 23.12 Xa et al. 2019 23.12 Xa et al. 2016 Carvaho et al. 2020 66.00 Seali and Daiman 2006 Seali and Daiman 2007 Seali and Daiman 2007 Seali and Daiman 2007<			3.85	Rasalanavho et al. 2020
1.1.2 Kang at kal, 2016 5.98 Kosiai cal, 2016 6.00 Rasalanavho et al, 2019 1.191 Rasalanavho et al, 2020 23.12 Xa et al, 2019 23.12 Xa et al, 2019 23.12 Xa et al, 2019 30.20 Metzok et al, 2013b 30.20 Metzok et al, 2013b 30.20 Sevia and Dahama 2006 2.32 Rubio et al, 2019 2.34 Sevia et al, 2019 2.35 Kotio et al, 2013 7.40 Sevorgulot et al, 2013 2.49 Sevorgulot et al, 2011 7.40 Cayreath et al, 2012 52.34 Xu et al, 2011 7.40 Cayreath et al, 2012 66.80 Campost al, 2010 7.40 Cayreath et al, 2012 7.40 Cayreath et al, 2012 7.51 Kosait et al, 2017 7.52 Cayreat al, 2011			5 70	Aloupi et al. 2012
5.9% Köänie et al. 2019 6.00 Rasalinavho et al. 2019 11.91 Rasalinavho et al. 2020 23.12 Xu et al. 2019 24.00 Carvalto et al. 2013b 30.20 Miceczk et al. 2013b 37.60 Geort and Kaguesz.2014 46.60 Seif and Dhama 2006 2.32 Rabio et al. 2018 2.40 Severopit et al. 2013 2.49 Severopit et al. 2013 2.49 Severopit et al. 2013 2.49 Severopit et al. 2013 2.35 Rabio et al. 2017 2.350 Seif and Dhama 2006 2.351 Rasalanavho et al. 2019 53.37 Rasalanavho et al. 2019 53.37 Rasalanavho et al. 2010 11.0 Alongi et al. 2010 12.357 Kasalanavho et al. 2013 7492 Cagier et al. 2010 12.357 Kosnini et al. 2019 12.357 Kosnini et al. 2019 12.357 Kosnini et al. 2019 12.357 Kosnini et al. 2010 142.20 Cag			5.00	
6.00 Rasalamsho et al. 2019 11.91 Rasalamsho et al. 2020 23.12 Xa et al. 2019 24.00 Carvalho et al. 2005 30.20 Meczek et al. 2015 30.20 Meczek et al. 2016 30.20 Meczek et al. 2017 46.60 Seiti and Dahma 2006 2.3 Rabio et al. 2018 2.40 Severogut et al. 2013 2.40 Severogut et al. 2013 7.40 Jedidi et al. 2019 2.350 Seiti and Dahma 2006 52.34 Xu et al. 2019 59.37 Rasalamsho et al. 2020 6680 Campos and Tejera 2011 74.92 Cayir et al. 2012 87.00 Caralho et al. 2018 2.325 Rasalamsho et al. 2019 9.322 Cayir et al. 2016 142.00 Rescat et al. 2018 150.53 Rasalamsho et al. 2019 160.00 Rasalamsho et al. 2019 17.70 Meczek et al. 2018 18.20 Rasalamsho et al. 2019 19.353 Rasalamsho et al			5.98	Kosanic et al. 2016
11.91Resaluration of al. 202023.12Xit et al. 201624.00Carvalho et al. 200530.20Mileczek et al. 2013b37.60Gezer and Kaygusaz. 201446.60Seil and Dahman 20062.32Rubio et al. 20172.32Rubio et al. 20172.32Severogu et al. 20137.40Jedidi et al. 20172.350Seil and Dahman 200652.34Xu et al. 20172.350Seil and Dahman 200652.34Xu et al. 20172.350Seil and Dahman 200652.34Xu et al. 201766.80Campos and Tejera 20117.492Caryler et al. 201681.10Aloupi et al. 201281.00Rasalamarko et al. 202066.80Carapho et al. 201882.71Mileczek et al. 2013a93.22Cayler et al. 201614.2.03Gezer and Kaygusze 201415.053Rasalamarko et al. 2019123.57Kosanic et al. 201815.053Rasalamarko et al. 20201413.58Konuk et al. 201815.053Rasalamarko et al. 2018163.60Kunk et al. 201817.70Mileczek et al. 201817.70Ket al. 201818.20Carvalho et al. 202017.70Ket al. 201818.20Rasalamarko et al. 202017.70Ket al. 201818.20Rasalamarko et al. 202019.70Mileczek et al. 201819.70Ket al. 201910.81Rasalamarko et al.			6.00	Rasalanavho et al. 2019
23.12Xa et al. 201924.00Carvaho et al. 201530.20Micenet et al. 2013b30.20Garer and Kaygusuz 201446.60Sesti and Dalman 20062.32Rubio et al. 20172.32Rubio et al. 20172.330Sesti and Dalman 20062.49Severagit et al. 20172.30Sesti and Dalman 20062.31Rubio et al. 20172.32Satal and Dalman 20062.32Casit et al. 20172.330Sesti and Dalman 20062.34Xa et al. 20192.350Casit and Dalman 20062.34Xa et al. 201066.80Campos and Tejera 201174.92Cajir et al. 201066.80Campos and Tejera 201174.92Cajir et al. 2010100.00Rasalama/ho et al. 202087.00Carvalho et al. 2018110Alongir et al. 2010100.00Rasalama/ho et al. 2019100.00Rasalama/ho et al. 2020111Stasinar/ho et al. 2020111Stasinar/ho et al. 2020111Rasalama/ho et al. 2020111Stasinar/ho et al. 2016111Rasalama/ho et al. 2017111Rasalama/ho et al. 2018124.00Karuke et al. 2017124.01Macek et al. 2018124.02Xa et al. 2019125.75Kasalama/ho et al. 2017126.77Xa et al. 2018127.70Xa et al. 2019128.77Stasilama/ho et al. 2020129.77Xa et al. 201			11.91	Rasalanavho et al. 2020
24.00Carvalho et al. 201530.20Miccak et al. 201530.20Gezr and Kaygeur. 201430.60Sesti and Dalman. 20062.31Ratio et al. 20182.49Severegilu et al. 20132.49Severegilu et al. 20172.49Severegilu et al. 20172.50Severegilu et al. 20163.50Severegilu et al. 20172.51Ku et al. 20192.52Ratio and Dalman. 20065.2.34Ku et al. 20195.2.34Ku et al. 20195.3.7Rastanovolt et al. 202066.80Caryatho et al. 202066.80Caryatho et al. 202074.92Cayier et al. 201681.10Abayjer et al. 201681.10Abayjer et al. 2016100.00Rastanovhe et al. 201885.71Miccak et al. 2018100.00Rastanovhe et al. 2019123.57Kosnic et al. 2016142.20Gezer and Kaygeur. 2014150.53Rastanovhe et al. 2020151.54Kosnic et al. 2017152.54Miccak et al. 2018150.53Rastanovhe et al. 2020151.66Rastanovhe et al. 2020152.77Miccak et al. 2017153.78Rastanovhe et al. 2020154.79Miccak et al. 2018155.79Rastanovhe et al. 2020154.70Miccak et al. 2017155.70Rastanovhe et al. 2020155.71Kastanovhe et al. 2020155.72Rastanovhe et al. 2020155.73Rastanovhe et al. 2020			23.12	Xu et al. 2019
30.20Miccack et al. 2013b37.60Gerer and Kayusouz 201446.60Seni and Callaum 20062.32Rubio et al. 20132.32Rubio et al. 20132.34Secreguit et al. 20137.40Jediti et al. 20172.350Sel and Dalman 20062.321Kubio et al. 20132.350Sel and Dalman 20062.323Rushanarbo et al. 20202.350Sel and Dalman 20062.324Xu et al. 20199.937Rushanarbo et al. 202066.80Campos and Tejern 201174.92Cayir et al. 201081.10Alongi et al. 201287.00Caralto et al. 201693.22Cayir et al. 2016123.57Rushanarbo et al. 2020123.57Rushanarbo et al. 2020124.20Gerer and Kayusuz.2014125.37Rushanarbo et al. 2021125.57Rushanarbo et al. 2021126.00Caranbos and Tejern 2011127.57Rushanarbo et al. 2021128.00Caranbos et al. 2021129.01Campos and Tejern 2011120.02Ku et al. 2019121.03Rushanarbo et al. 2020121.04Rushanarbo et al. 2020121.05Zupot121.05Rushanarbo et al. 2020121.06Rushanarbo et al. 2020121.07Miccack et al. 2015			24.00	Carvalho et al. 2005
37.60Gezer and Kayasar. 201446.60Seeti and Daluan. 20062.1Kotio et al. 20172.32Rubio et al. 20132.49Severaje et al. 20137.40Iseding et al. 20132.35.0Sesti and Dalman. 20062.3.1X tet al. 20132.3.2Severaje et al. 20132.3.2Capit et al. 20132.3.4X tet al. 20192.3.5Capit et al. 20172.3.6Capit et al. 20172.3.7Rasalamatho et al. 202066.80Campos and Tejern 201174.92Capit et al. 201387.00Carit et al. 201387.00Carit et al. 201392.22Capit et al. 201610.00Rasalamatho et al. 201910.00Rasalamatho et al. 201910.00Rasalamatho et al. 201912.3.57Konsatis et al. 2016142.20Gezer and Kayasar. 201413.58Konnok et al. 201313.58Rasalamotho et al. 2013142.20Rasalamotho et al. 202015.16Rasalamotho et al. 202112.40K at al. 201312.40K at al. 201312.40K at al. 201713.58K at al. 201714.11Rasalamotho et al. 202013.70Meczek et al. 201714.20Campos and Tejern. 201115.16Rasalamotho et al. 202012.40K at et al. 201713.70Meczek et al. 201714.11Rasalamotho et al. 202015.16Rasalamotho et al. 20			30.20	Mleczek et al. 2013b
AchiAchiSesti and Dalman 2006Zn0.56Konki et al. 20072.23Rubio et al. 20182.49Severoglu et al. 20137.40Iditi et al. 20172.5.00Sesti and Dalman 200652.34Ku et al. 201952.34Ku et al. 201952.34Ku et al. 20106.6.00Campos and Tejera 20117.492Cayir et al. 20106.8.00Carpos and Tejera 20117.492Cayir et al. 20167.492Cayir et al. 20168.8.11Mlezzk et al. 20138.8.71Mlezzk et al. 201610.00Rasalanavho et al. 201910.32.00Carvalho et al. 201612.3.57Kosnine et al. 201612.3.57Kosnine et al. 201712.3.57Kosnine et al. 201612.3.57Kosnine et al. 201713.58Rasalanavho et al. 2020Al13.5813.50Rasalanavho et al. 202014.00Carpos and Tejera 201115.01Mazzke et al. 201517.70Mleczk et al. 201512.00Carpos and Tejera 201113.58Rasalanavho et al. 202024.07Mleczk et al. 201514.00Kanaki et al. 201715.01Mazzke et al. 201516.10Rasalanavho et al. 202024.07Ku et al. 201714.00Kanaki et al. 201715.01Mazzke et al. 201816.02Rasalanavho et al. 202017.70Mleczk et al. 201717.71Mleczk e			37.60	Gezer and Kaygusuz 2014
Zn 0.56 Konuk et al. 2007 2.32 Rubio et al. 2018 2.32 Severogin et al. 2013 7.40 Jedidi et al. 2017 2.350 Sestion Damas 2.324 Xn et al. 2019 2.3250 Rasalamayho et al. 2020 5.324 Xn et al. 2019 5.324 Xn et al. 2019 5.324 Xn et al. 2012 6.680 Cayir et al. 2010 81.10 Aloupi et al. 2012 81.10 Aloupi et al. 2012 81.10 Cayir et al. 2013 93.22 Cayir et al. 2016 142.20 Gayir et al. 2016 142.20 Gazer and Krygussz 2014 150.53 Rasalamayho et al. 2020 150.53 Rasalamayho et al. 2020 150.53 Rasalamayho et al. 2020 161.51 Rasalamayho et al. 2020 17.70 Milezek et al. 2017 182.00 Rubio et al. 2020 124.00 Konuk et al. 2020 124.01 Milezek et al. 2017 124.02 Gazer and Krygussz 124.03 Konuk et al. 2020 <			46.60	Sesli and Dalman 2006
2.32Rubio et al. 20182.49Sevengul et al. 20172.49Sevengul et al. 20172.50Sesti and Dalman 20062.5.0Sesti and Dalman 20062.5.1Rasalanavho et al. 20205.3.7Rasalanavho et al. 202066.80Campos and Tejera 201174.92Cayiet al. 201081.00Aloupi et al. 201287.00Carvalho et al. 202187.00Carvalho et al. 201587.00Carvalho et al. 20169.3.22Cayiet et al. 2016100.00Rasalanavho et al. 2019123.57Kosiet et al. 2016123.57Kosiet et al. 2016123.57Kosiet et al. 2016123.57Kosiet et al. 201813.58Rasalanavho et al. 2020Al13.58150.53Rasalanavho et al. 2020117.00Mlorezek et al. 201820.01Carvalho et al. 2020117.70Mlorezek et al. 2018124.00Kanie et al. 2017125.00Carulto et al. 2020117.70Mlorezek et al. 2018124.00Kanie et al. 2020217.71Jedid et al. 2021124.00Kanie et al. 2020124.00Kanie et al. 2020 </td <td></td> <td>Zn</td> <td>0.56</td> <td>Konuk et al. 2007</td>		Zn	0.56	Konuk et al. 2007
2.49 Severaglu et al. 2013 7.40 Jedidi et al. 2017 2.5.0 Seli and Dahma 2006 52.34 Xu et al. 2019 52.34 Xu et al. 2019 68.00 Campos and Figera 2011 74.92 Cayir et al. 2010 81.10 Abupi et al. 2012 81.00 Carvaho et al. 2016 88.71 Mecrek et al. 2013 93.22 Cayir et al. 2016 100.00 Carvaho et al. 2019 123.57 Kosain et al. 2016 142.20 Gezer and Kaygusuz 2014 150.53 Rasalnawho et al. 2020 142.20 Gezer and Kaygusuz 2014 150.53 Rasalnawho et al. 2020 142.20 Gezer and Kaygusuz 2014 150.54 Konuk et al. 2020 18.20 Rasalnawho et al. 2020 17.70 Mecrek et al. 2013b 14.00 Campos and Figera 2011 Ca 78.37 Rasalnawho et al. 2020 117.70 Mecrek et al. 2013b 124.00 124.00 Koruk et al. 2017 124.00 124.00 Carvaho et al. 2020 126.			2.32	Rubio et al. 2018
7.40 Jedidi et al. 2017 23.50 Seisi and Dahma 2006 23.50 Xu et al. 2019 59.37 Rasalamybo et al. 2020 66.80 Campos and Tejera 2011 74.92 Cayir et al. 2016 81.10 Abagir et al. 2017 81.10 Abagir et al. 2016 81.10 Abagir et al. 2016 81.10 Cayir et al. 2016 81.10 Cayir et al. 2016 100.00 Rasalamybo et al. 2019 102.00 Cayir et al. 2016 123.57 Kosmic et al. 2016 123.57 Rasalamybo et al. 2020 123.57 Rasalamybo et al. 2020 123.57 Rasalamybo et al. 2020 124.20 Gezer and Kaygusuz 2014 150.53 Rasalamybo et al. 2020 150.53 Rasalamybo et al. 2020 150.54 Rasalamybo et al. 2020 150.55 Rasalamybo et al. 2020 163.60 Kasalamybo et al. 2020 124.00 Komk et al. 2017 124.00 Komk et al. 2017 125.16 Rasalamybo et al. 2020 126.17 Heck et al.			2.49	Severoglu et al. 2013
23.50 Sesii and Dalman 2006 52.34 Xu et al. 2019 52.34 Xu et al. 2019 66.80 Campos and Tejera 2011 74.92 Cayir et al. 2010 81.10 Aloupi et al. 2012 87.00 Carvalho et al. 2005 88.71 Miczek et al. 2013a 93.22 Cayir et al. 2010 100.00 Rasalamavho et al. 2019 123.57 Kosanic et al. 2019 123.57 Kosanic et al. 2016 142.20 Gezer and Kaygustz 2014 150.53 Rasalamavho et al. 2020 Al 13.58 Konuk et al. 2018 6.70 Miczek et al. 2013b 70.10 Campos and Tejera 2011 Ca 78.37 Rasalamavho et al. 2020 117.70 Miczek et al. 2013b 124.00 Konuk et al. 2019 124.00 Konuk et al. 2019 124.00 Rasalamavho et al. 2020 124.00 Konuk et al. 2019 124.00 Campos and Tejera 2011 65.16 Rasalamavho et al. 2020 124.00 Camalos et al. 2020 124.0			7.40	Jedidi et al. 2017
52.34 Xu et al. 2019 59.37 Raadamaho et al. 2020 66.80 Campos and Tejera 2011 74.92 Cajir et al. 2010 81.10 Aloupi et al. 2012 87.00 Carvaiho et al. 2005 87.01 Miczek et al. 2013 93.22 Cayir et al. 2016 100.00 Rasalamaho et al. 2016 123.37 Kosanic et al. 2016 123.357 Kosanic et al. 2016 124.20 Gezer and Kaygusz 2014 13.05 Rasalamaho et al. 2020 142.20 Gezer and Kaygusz 2014 13.05 Rasalamaho et al. 2017 Ca 78.37 Rasalamaho et al. 2018 124.00 Konuk et al. 2013b 124.00 Konuk et al. 2013b 124.00 Konuk et al. 2016 124.07 Xu et al. 2016 124.07 <td< td=""><td></td><td></td><td>23.50</td><td>Sesli and Dalman 2006</td></td<>			23.50	Sesli and Dalman 2006
59.37 Rasalanavho et al. 2020 66.80 Campos and Tejera 2011 74.92 Cayir et al. 2010 81.10 Aloupi et al. 2012 87.00 Carvalho et al. 2013 87.00 Carvalho et al. 2013 88.71 Meczek et al. 2016 88.71 Cayir et al. 2016 100.00 Rasalanavho et al. 2019 123.57 Kosanic et al. 2016 123.57 Kosanic et al. 2017 123.57 Kosanic et al. 2018 120.53 Rasalanavho et al. 2020 Al 13.58 Konuk et al. 2018 18.20 Resard Kaysusz.2014 18.20 Rasalanavho et al. 2020 Al 13.58 Konuk et al. 2013 17.70 Meczek et al. 2013 Meczek et al. 2013 18.20 Rasalanavho et al. 2020 Rasalanavho et al. 2020 124.00 Konuk et al. 2007 Meczek et al. 2013 124.00 Konuk et al. 2014 Storatho et al. 2020 124.00 Konuk et al. 2015 Meczek et al. 2015 Mg 0.78 Rasalanavho et al. 2020 13.20 Konuk et al. 2014 </td <td></td> <td></td> <td>52.34</td> <td>Xu et al. 2019</td>			52.34	Xu et al. 2019
66.80 Campos and Tejera 2011 74.92 Cayir et al. 2010 81.10 Alouji et al. 2012 87.00 Carvalho et al. 2005 88.71 Micczek et al. 2013a 93.22 Cayir et al. 2010 100.00 Rasalnavho et al. 2019 123.57 Kosanic et al. 2016 142.20 Gezer and Kaygusz.2014 150.53 Rasalanavho et al. 2020 AI 150.53 Rasalanavho et al. 2018 18.20 Rubio et al. 2018 17.70 Rubio et al. 2020 117.70 Micczek et al. 2013b 124.00 Konuk et al. 2020 247.07 Xu et al. 2017 250.00 Carvalho et al. 2020 247.07 Xu et al. 2017 Mg 078 Rusalnavho et al. 2020 13.20 Ku et al. 2017 13.20 Ku et al. 2017 14.20 Mict et al. 2017 Mg 0.73 Rusalanavho et al. 2020 13.20			59.37	Rasalanavho et al. 2020
74.92 Cayir et al. 2010 81.10 Aloupi et al. 2012 87.00 Carvaho et al. 2013 87.00 Carvaho et al. 2013 93.22 Cayir et al. 2010 100.00 Rusalanavho et al. 2019 123.57 Kosanic et al. 2016 142.20 Gezer and Kaygusuz 2014 150.53 Rasalanavho et al. 2020 AI 13.58 Konuk et al. 2017 18.20 Rubio et al. 2018 36.70 Milcezk et al. 2013h 70.10 Campos and Tejera 2011 Ca 78.37 Rusalanavho et al. 2020 117.70 Milcezk et al. 2013h 124.00 Konuk et al. 2017 124.00 Konuk et al. 2017 124.00 Konuk et al. 2020 124.00 Konuk et al. 2020 124.00 Konuk et al. 2020 124.01 Xu et al. 2017 Mg 0.78 Rusalanavho et al. 2020 13.20 Konuk et al. 2020 13.20 Konuk et al. 2020 13.20 Konuk et al. 2015 124.29 Xu et al. 2017 K			66.80	Campos and Tejera 2011
81.10 Augui et al. 2012 87.00 Carvalho et al. 2005 88.71 Meczek et al. 2013a 93.22 Cayir et al. 2010 100.00 Rasalanavho et al. 2019 123.57 Kosanic et al. 2016 142.20 Gezer and Kayusuz 2014 150.53 Rasalanavho et al. 2020 Al 13.58 Konuk et al. 2007 18.20 Rubio et al. 2018 70.10 Campos and Tejera 2011 Ca 78.37 Rasalanavho et al. 2020 117.70 Meczek et al. 2013b 124.00 Konuk et al. 2007 151.6 Rasalanavho et al. 2020 247.07 Xu et al. 2019 250.00 Carvalho et al. 2020 247.07 Xu et al. 2019 250.00 Carvalho et al. 2020 11.1 Rasalanavho et al. 2020 124.29 Xu et al. 2019 250.01 Jedidi et al. 2017 Mg 0.78 Rasalanavho et al. 2020 13.20 Konuk et al. 2013b 124.29 Xu et al. 2019 124.29 Xu et al. 2017 K </td <td></td> <td></td> <td>74.92</td> <td>Cayir et al. 2010</td>			74.92	Cayir et al. 2010
87.00 Carvalho et al. 2005 88.71 Mleczek et al. 2013a 93.22 Cayir et al. 2010 100.00 Rasalanavho et al. 2019 123.57 Kosanic et al. 2016 142.20 Gezer and Kaygusuz 2014 150.53 Rasalanavho et al. 2020 Al 13.58 Konuk et al. 2016 18.20 Rubio et al. 2018 36.70 Mleczek et al. 2013b 70.10 Campos and Tejera 2011 Ca 78.37 Rasalanavho et al. 2020 117.70 Mleczek et al. 2013b 124.00 Konuk et al. 2007 165.16 Rasalanavho et al. 2020 247.07 Xu et al. 2017 165.16 Rasalanavho et al. 2020 247.07 Xu et al. 2017 Mg 0.78 Rasalanavho et al. 2020 1.11 Rasalanavho et al. 2020 1.12 Jacidi et al. 2017 Mg 0.78 Rasalanavho et al. 2020 1.13 Xu et al. 2019/ 114 1.24.29 Xu et al. 2019/ 124.29 K 162.468 Jedidi et al. 2017 <			81.10	Aloupi et al. 2012
88.71 Mlcczek et al. 2013a 93.22 Cayir et al. 2010 100.00 Rasalanavho et al. 2019 123.57 Kosanie et al. 2016 142.02 Gezer and Kaygusuz 2014 142.03 Rasalanavho et al. 2020 Al 150.53 Rasalanavho et al. 2020 Al 13.58 Konuk et al. 2013b 18.20 Mlcczek et al. 2013b 70.10 Campos and Tejera 2011 Ca 78.37 Rasalanavho et al. 2020 117.70 Mlcczek et al. 2013b 124.00 124.00 Konuk et al. 2020 247.07 247.07 Xu et al. 2019 250.00 250.00 Carvalho et al. 2020 247.07 Xu et al. 2017 Mg 0.78 Rasalanavho et al. 2020 13.20 Konuk et al. 2020 13.20 Konuk et al. 2020 13.20 Konuk et al. 2013b 1244.29 Xu et al. 2017 K 1624.68 Baidi et al. 2017			87.00	Carvalho et al. 2005
93.22 Cayir et al. 2010 100.00 Rasalanavho et al. 2019 123.57 Kosanic et al. 2016 142.20 Gezer and Kaygusuz 2014 150.53 Rasalanavho et al. 2020 Al 13.58 Konuk et al. 2007 18.20 Rubio et al. 2018 36.70 Miczek et al. 2013b 70.10 Campos and Tejera 2011 Ca 78.37 Rasalanavho et al. 2020 117.70 Miczek et al. 2013b 124.00 Konuk et al. 2007 165.16 Rasalanavho et al. 2020 247.07 Xu et al. 2019 250.00 Carvalho et al. 2020 247.07 Xu et al. 2017 Mg 0.78 Rasalanavho et al. 2020 13.20 Konuk et al. 2017 K 1624.68 Edidi et al. 2017 K 1624.68 Edidi et al. 2017 K 1623.00 Konuk et al. 2020 124.429 Xu et al. 2013b 124.429 Ku			88.71	Mleczek et al. 2013a
100.00 Rasalanavho et al. 2019 123.57 Kosanic et al. 2016 142.20 Gezer and Kaygusuz 2014 150.53 Rasalanavho et al. 2020 Al 13.58 Konuk et al. 2007 18.20 Rubio et al. 2018 36.70 Mleczek et al. 2013b 70.10 Campos and Tejera 2011 Ca 78.37 Rasalanavho et al. 2020 117.70 Mleczek et al. 2013b 124.00 Kouuk et al. 2007 165.16 Rasalanavho et al. 2020 247.07 Xu et al. 2019 250.00 Carvalho et al. 2020 111 Rasalanavho et al. 2020 124.00 Kouuk et al. 2007 165.16 Rasalanavho et al. 2020 247.07 Xu et al. 2019 250.00 Carvalho et al. 2020 13.20 Konuk et al. 2020 13.20 Konuk et al. 2020 13.20 Konuk et al. 2019 1244.29 Xu et al. 2019 1244.29 Rasalanavho et al. 2020 124.29 Rasalanavho et al. 2020 124.68 Jedidi et al. 2017 <td< td=""><td></td><td></td><td>93.22</td><td>Cavir et al. 2010</td></td<>			93.22	Cavir et al. 2010
123.57 Kosanic et al. 2016 142.20 Gezer and Kaygusuz 2014 150.53 Rasalanavho et al. 2020 Al 13.58 Konuk et al. 2007 18.20 Rubio et al. 2018 36.70 Mleczek et al. 2013b 70.10 Campos and Tejera 2011 Ca 78.37 Rasalanavho et al. 2020 117.70 Mleczek et al. 2013b 124.00 Konuk et al. 2007 165.16 Rasalanavho et al. 2020 165.16 Rasalanavho et al. 2020 247.07 Xu et al. 2019 250.00 Carvalho et al. 2015 262.17 Jedidi et al. 2017 Mg 0.78 Rasalanavho et al. 2020 13.20 Konuk et al. 2019 13.20 Konuk et al. 2019 13.20 Konuk et al. 2017 K 16.29 Rasalanavho et al. 2017 K 16.29 Rasalanavho et al. 2020 20.75 Rasalanavho et al. 2020 20.75 20.75 Rasalanavho et al. 2020 20.75 20.75 Rasalanavho et al. 2020 20.75 20.75 Ra			100.00	Rasalanavho et al. 2019
Id2.20 Gezer and Kaygustiz. 2014 150.53 Rasalanavho et al. 2020 Al 13.58 Konuk et al. 2007 18.20 Rubio et al. 2018 36.70 Mleczek et al. 2013b 70.10 Campos and Tejera 2011 Ca 78.37 Rasalanavho et al. 2020 117.70 Mleczek et al. 2013b 124.00 Konuk et al. 2020 117.70 Mleczek et al. 2013b 124.00 Konuk et al. 2020 117.70 Mleczek et al. 2017 165.16 Rasalanavho et al. 2020 247.07 X uet al. 2019 250.00 Carvalho et al. 2020 262.17 Jedidi et al. 2017 Mg 0.78 Rasalanavho et al. 2020 1.11 Rasalanavho et al. 2020 1.320 Konuk et al. 2017 179.70 Mleczek et al. 2013b 1244.29 Xu et al. 2017 1624.68 Jedidi et al. 2017 K 16.29 Rasalanavho et al. 2020 20.75 Rasalanavho et al. 2020 20.75 Rasalanavho et al. 2020 20.75 Rasalanavh			123.57	Kosanic et al. 2016
Al 150.53 Rasalanavho et al. 2020 Al 13.58 Konuk et al. 2007 18.20 Rubio et al. 2018 36.70 Mleczek et al. 2013b 70.10 Campos and Tejera 2011 Ca 78.37 Rasalanavho et al. 2020 117.70 Mleczek et al. 2013b 124.00 Konuk et al. 2007 165.16 Rasalanavho et al. 2020 247.07 Xu et al. 2019 250.00 Carvalho et al. 2020 262.17 Jedidi et al. 2017 Mg 0.78 Rasalanavho et al. 2020 13.20 Konuk et al. 2019 1244.29 Xu et al. 2019 13.20 Konuk et al. 2020 13.20 Konuk et al. 2013b 1244.29 Xu et al. 2019 1244.29 Xu et al. 2019 1244.29 Xu et al. 2019 1624.68 Jedidi et al. 2017 K 16.29 Rasalanavho et al. 2020 20,75 Rasalanavho et			142.20	Gezer and Kaygusuz 2014
Al 13.58 Konuk et al. 2007 18.20 Rubio et al. 2018 36.70 Mleczek et al. 2013b 70.10 Campos and Tejera 2011 Ca 78.37 Rasalanavho et al. 2020 117.70 Mleczek et al. 2013b 124.00 Konuk et al. 2007 165.16 Rasalanavho et al. 2020 247.07 Xu et al. 2019 250.00 Carvalho et al. 2020 262.17 Jedidi et al. 2017 Mg 0.78 Rasalanavho et al. 2020 13.20 Konuk et al. 2007 13.20 Konuk et al. 2019 124.09 Nu et al. 2017 Mg 124.29 Xu et al. 2017 Mg 0.78 Rasalanavho et al. 2020 13.20 Konuk et al. 2019 1244.29 Xu et al. 2019 1244.29 Xu et al. 2019 144.29 Xu et al. 2019 K 1624.68 Jedidi et al. 2017 K 162.9 Rasalanavho et al. 2020 20.75 Rasalanavho et al. 2020 Xu et al. 2019 1644.68 Jedidi et al. 2017 K 162.9 Rasalanavho et al. 2020 20.75 Rasalanavho et al. 2020 20.75 Rasalanavho et al. 2020 <t< td=""><td></td><td></td><td>150.53</td><td>Rasalanavho et al. 2020</td></t<>			150.53	Rasalanavho et al. 2020
18.20 Rubio et al. 2018 36.70 Mleczek et al. 2013b 70.10 Campos and Tejera 2011 Ca 78.37 Rasalanavho et al. 2020 117.70 Mleczek et al. 2013b 124.00 Konuk et al. 2007 165.16 Rasalanavho et al. 2020 247.07 Xu et al. 2019 250.00 Carvalho et al. 2020 262.17 Jediei et al. 2017 Mg 0.78 Rasalanavho et al. 2020 13.20 Konuk et al. 2020 13.20 Konuk et al. 2019 1624.68 Jedidi et al. 2017 K 16.29 Rasalanavho et al. 2020 20.75 Rasalanavho		Al	13.58	Konuk et al. 2007
36.70 Mlcczek et al. 2013b 70.10 Campos and Tejera 2011 Ca 78.37 Rasalanavho et al. 2020 117.70 Mlcczek et al. 2013b 124.00 Konuk et al. 2007 165.16 Rasalanavho et al. 2020 247.07 Xu et al. 2019 250.00 Carvalho et al. 2020 262.17 Jedidi et al. 2017 Mg 0.78 Rasalanavho et al. 2020 1.11 Rasalanavho et al. 2020 1.20 Konuk et al. 2007 13.20 Konuk et al. 2017 1424.29 Xu et al. 2019b 1244.29 Xu et al. 2019b 1244.29 Xu et al. 2019b 1624.68 Jedidi et al. 2017 K 16.29 Rasalanavho et al. 2020 75 Rasalanavho et al. 2020			18.20	Rubio et al. 2018
Ca Ca Ca 78.37 Rasalanavho et al. 2020 117.70 Mleczek et al. 2013b 124.00 Konuk et al. 2007 165.16 Rasalanavho et al. 2020 247.07 Xu et al. 2019 250.00 Carvalho et al. 2005 262.17 Mg 0.78 Rasalanavho et al. 2020 1.11 Rasalanavho et al. 2020 1.12 Mg 0.78 Rasalanavho et al. 2020 1.12 Rasalanavho et al. 2020 1.12 K K 16.29 K 162.468 Jedici et al. 2017 K K 16.29 Rasalanavho et al. 2020 1.5.60 Konuk et al. 2017 Konuk et al. 2020 1.5.60 Konuk et al. 2017 KONUK et al. 2020 1.5.60 Konuk et al. 2017 KONU			36.70	Mleczek et al. 2013b
Ca 78.37 Rasalanavho et al. 2020 117.70 Mleczek et al. 2013b 124.00 Konuk et al. 2007 165.16 Rasalanavho et al. 2020 247.07 Xu et al. 2019 250.00 Carvalho et al. 2005 262.17 Jedidi et al. 2017 Mg 0.78 Rasalanavho et al. 2020 1.11 Rasalanavho et al. 2020 13.20 Konuk et al. 2007 179.70 Mleczek et al. 2013b 1244.29 Xu et al. 2019 1624.68 Jedidi et al. 2017 K 162.9 Rasalanavho et al. 2020 K 16.29 Rasalanavho et al. 2019/ 1624.68 Jedidi et al. 2017 1624.68 16.29 Rasalanavho et al. 2020 K 16.29 Rasalanavho et al. 2020 75.60 Konuk et al. 2007 16859.10 197.50 Mleczek et al. 2017 24,987.50 Mleczek et al. 2013b 26,000.00 Carvalho et al. 2015			70.10	Campos and Tejera 2011
117.70 Mleczek et al. 2013b 124.00 Konuk et al. 2007 165.16 Rasalanavho et al. 2020 247.07 Xu et al. 2019 250.00 Carvalho et al. 2005 262.17 Jedidi et al. 2017 Mg 0.78 Rasalanavho et al. 2020 1.11 Rasalanavho et al. 2020 13.20 Konuk et al. 2017 199.70 Mleczek et al. 2013b 1244.29 Xu et al. 2019/ 1624.68 Jedidi et al. 2017 K 16.29 Rasalanavho et al. 2020 20.75 Rasalanavho et al. 2020 75.60 Konuk et al. 2020 75.60 Konuk et al. 2017 24,987.50 Mleczek et al. 2013b 24,987.50 Mleczek et al. 2017		Ca	78.37	Rasalanavho et al. 2020
124.00 Konuk et al. 2007 165.16 Rasalanavho et al. 2020 247.07 Xu et al. 2019 250.00 Carvalho et al. 2005 262.17 Jedidi et al. 2017 Mg 0.78 Rasalanavho et al. 2020 1.11 Rasalanavho et al. 2020 13.20 Konuk et al. 2007 144.29 Xu et al. 2013b 1244.29 Xu et al. 2019/ 1624.68 Jedidi et al. 2017 K 16.29 Rasalanavho et al. 2020 20.75 Rasalanavho et al. 2020 75.60 Konuk et al. 2007 6859.10 Jedidi et al. 2017 24,987.50 Mlczek et al. 2013b 24,987.50 Mlczek et al. 2013b			117.70	Mleczek et al. 2013b
165.16 Rasalanavho et al. 2020 247.07 Xu et al. 2019 250.00 Carvalho et al. 2005 262.17 Jedidi et al. 2017 Mg 0.78 Rasalanavho et al. 2020 1.11 Rasalanavho et al. 2020 13.20 Konuk et al. 2007 179.70 Mleczek et al. 2013b 1244.29 Xu et al. 2019/ 1624.68 Jedidi et al. 2017 K 16.29 Rasalanavho et al. 2020 27.50 Rasalanavho et al. 2020 75.60 Konuk et al. 2007 6859.10 Jedidi et al. 2017 4987.50 Mleczek et al. 2013b			124.00	Konuk et al. 2007
247.07 Xu et al. 2019 250.00 Carvalho et al. 2005 262.17 Jedidi et al. 2017 Mg 0.78 Rasalanavho et al. 2020 1.11 Rasalanavho et al. 2020 1.11 Rasalanavho et al. 2007 13.20 Konuk et al. 2017 179.70 Meczek et al. 2013b 1244.29 1624.68 Jedidi et al. 2017 K 16.29 Rasalanavho et al. 2020 20.75 Rasalanavho et al. 2020 75.60 Konuk et al. 2007 6859.10 Jedidi et al. 2017 24,987.50 Meczek et al. 2013b 24,987.50 Meczek et al. 2013b			165.16	Rasalanavho et al. 2020
250.00 Carvaho et al. 2005 262.17 Jedidi et al. 2017 Mg 0.78 Rasalanavho et al. 2020 1.11 Rasalanavho et al. 2020 1.12 Konuk et al. 2020 13.20 Konuk et al. 2007 179.70 Mleczek et al. 2013b 1244.29 Xu et al. 2019/ 1624.68 Jedidi et al. 2017 K 16.29 Rasalanavho et al. 2020 20.75 Rasalanavho et al. 2020 75.60 Konuk et al. 2020 75.60 Konuk et al. 2020 75.60 Konuk et al. 2020 6859.10 Jedidi et al. 2017 24,987.50 Mleczek et al. 2013b			247.07	Xu et al. 2019
262.17 Jedidi et al. 2017 Mg 0.78 Rasalanavho et al. 2020 1.11 Rasalanavho et al. 2020 13.20 Konuk et al. 2007 179.70 Mleczek et al. 2013b 1244.29 Xu et al. 2019/ 1624.68 Jedidi et al. 2017 K 16.29 Rasalanavho et al. 2020 20.75 Rasalanavho et al. 2020 75.60 Konuk et al. 2007 6859.10 Jedidi et al. 2017 24,987.50 Mleczek et al. 2013b			250.00	Carvalho et al. 2005
Mg 0.78 Rasalanavho et al. 2020 1.11 Rasalanavho et al. 2020 13.20 Konuk et al. 2007 179.70 Mleczek et al. 2013b 1244.29 Xu et al. 2019/ 1624.68 Jedidi et al. 2017 K 16.29 Rasalanavho et al. 2020 20.75 Rasalanavho et al. 2020 75.60 Konuk et al. 2007 6859.10 Jedidi et al. 2017 24,987.50 Mleczek et al. 2013b 26,000.00 Carvalho et al. 2020			262.17	Jedidi et al. 2017
1.11 Rasalanavho et al. 2020 13.20 Konuk et al. 2007 13.20 Konuk et al. 2017 179.70 Mleczek et al. 2013b 1244.29 Xu et al. 2019/ 1624.68 Jedidi et al. 2017 K 16.29 20.75 Rasalanavho et al. 2020 75.60 Konuk et al. 2007 6859.10 Jedidi et al. 2017 24,987.50 Mleczek et al. 2013b 26,000.00 Carvalho et al. 2025		Mg	0.78	Rasalanavho et al. 2020
13.20 Konuk et al. 2007 179.70 Mleczek et al. 2013b 1244.29 Xu et al. 2019/ 1624.68 Jedidi et al. 2017 K 16.29 Rasalanavho et al. 2020 20.75 Rasalanavho et al. 2020 75.60 Konuk et al. 2007 6859.10 Jedidi et al. 2017 24,987.50 Mleczek et al. 2013b 26,000.00 Carvalho et al. 2005		C	1.11	Rasalanavho et al. 2020
179.70 Mleczek et al. 2013b 1244.29 Xu et al. 2019/ 1624.68 Jedidi et al. 2017 K 16.29 Rasalanavho et al. 2020 20.75 Rasalanavho et al. 2020 75.60 Konuk et al. 2007 6859.10 Jedidi et al. 2017 24,987.50 Mleczek et al. 2013b 26,000.00 Carvalho et al. 2005			13.20	Konuk et al. 2007
1244.29 Xu et al. 2019/ 1624.68 Jedidi et al. 2017 K 16.29 Rasalanavho et al. 2020 20.75 Rasalanavho et al. 2020 75.60 Konuk et al. 2007 6859.10 Jedidi et al. 2017 24,987.50 Mleczek et al. 2013b 26,000.00 Carvalho et al. 2005			179.70	Mleczek et al. 2013b
1624.68 Jedidi et al. 2017 K 16.29 Rasalanavho et al. 2020 20.75 Rasalanavho et al. 2020 75.60 Konuk et al. 2007 6859.10 Jedidi et al. 2017 24,987.50 Mleczek et al. 2013b 26,000.00 Carvalho et al. 2005			1244.29	Xu et al. 2019/
K 16.29 Rasalanavho et al. 2020 20.75 Rasalanavho et al. 2020 75.60 Konuk et al. 2007 6859.10 Jedidi et al. 2017 24,987.50 Mleczek et al. 2013b 26,000.00 Carvalho et al. 2005			1624.68	Jedidi et al. 2017
20.75 Rasalanavho et al. 2020 75.60 Konuk et al. 2007 6859.10 Jedidi et al. 2017 24,987.50 Mleczek et al. 2013b 26,000.00 Carvalho et al. 2005		К	16.29	Rasalanavho et al. 2020
75.60 Konuk et al. 2007 6859.10 Jedidi et al. 2017 24,987.50 Mleczek et al. 2013b 26,000.00 Carvalho et al. 2005			20.75	Rasalanavho et al. 2020
6859.10 Jedidi et al. 2017 24,987.50 Mleczek et al. 2013b 26,000.00 Carvalho et al. 2005			75.60	Konuk et al. 2007
24,987.50 Mleczek et al. 2013b 26,000.00 Carvalho et al. 2005			6859.10	Jedidi et al. 2017
26,000.00 Carvalho et al. 2005			24.987.50	Mleczek et al. 2013b
			26,000.00	Carvalho et al. 2005

Table 5 (continued)

Metal	Concentration (mg·kg ⁻¹)	Reference
L. piperatus		
Fe	3.47	Konuk et al. 2007
	78.80	Cvetkovic et al. 2015
	145.00	Demirbaş 2001a
	940.00	Ayaz et al. 2011
Cd	0.88	Demirbas 2003
	1.08	Demirbaş 2001a
	1.93	Ayaz et al. 2011
	2.93	Cvetkovic et al. 2015
Cr	0.10	Konuk et al. 2007
	1.08	Demirbaş 2001a
	4.29	Cvetkovic et al. 2015
	15.05	Demirbas 2003
Se	0.05	Konuk et al. 2007
Р	5526.80	Cvetkovic et al. 2015
Cu	0.44	Konuk et al. 2007
	16.80	Demirbaş 2001a
	18.11	Demirbas 2003
	42.60	Cvetkovic et al. 2015
	53.50	Ayaz et al. 2011
Mn	0.45	Konuk et al. 2007
	7.60	Demirbaş 2001a
	14.50	Cvetkovic et al. 2015
	328.60	Ayaz et al. 2011
Zn	0.58	Konuk et al. 2007
	29.40	Demirbaş 2001a
	45.20	Cvetkovic et al. 2015
	88.70	Ayaz et al. 2011
Al	9.80	Demirbas 2001a
	12.15	Konuk et al. 2007
	80.20	Cvetkovic et al. 2015
Ca	3.36	Konuk et al. 2007
	78.60	Demirbaş 2001a
	548.20	Cvetkovic et al. 2015
Mg	6.78	Konuk et al. 2007
C	461.50	Cvetkovic et al. 2015
	850.00	Demirbas 2001a
К	79.00	Konuk et al. 2007
	28,000.00	Demirbas 2001a
	32.827.10	Cvetkovic et al. 2015
L. salmonicolor	- ,- · · ·	
Fe	12.00	Konuk et al. 2007
	71.78	Niemiec et al. 2018
	137.87	Zavastin et al. 2015
	239.00	Ouzouni et al. 2007
	10,558.00	Niemiec et al. 2018
Cd	0.01	Konuk et al 2007
	0.05	Zavastin et al. 2015
	0.09	Ouzouni et al. 2013
	0.52	Chowaniak et al. 2017
	6.00	Chowaniak et al. 2017
	0.00	Chowannak et al. 2017

Table 5 (continued)

Metal	Concentration (mg·kg ⁻¹)	Reference
Cr	0.24	(Konuk et al. 2007)
	0.27	Niemiec et al. 2017
	0.41	Ouzouni et al. 2007
	1.91	Niemiec et al. 2017
Se	0.06	Konuk et al. 2007
	1.49	Zavastin et al. 2015
Р	121.00	Konuk et al. 2007
Cu	0.05	Konuk et al. 2007
	6.15	Ouzouni et al. 2007
	6.73	Chowaniak et al. 2017
	14.61	Zavastin et al. 2015
	22.42	Chowaniak et al. 2017
Mn	0.74	Konuk et al. 2007
	8.52	Niemiec et al. 2018
	20.80	Ouzouni et al. 2007
	36.35	Zavastin et al. 2015
	714.00	Niemiec et al. 2018
Zn	0.52	Konuk et al. 2007
	39.08	Chowaniak et al. 2017
	94.50	Ouzouni et al. 2007
	98.16	Chowaniak et al. 2017
	152.53	Zavastin et al. 2015
Al	4.56	Konuk et al. 2007
	19.34	Niemiec et al. 2017
	107.50	Niemiec et al. 2017
Ca	-	-
Mg	11.60	Konuk et al. 2007
8	855.00	Ouzouni et al. 2007
	934.67	Zavastin et al. 2015
К	112.00	Konuk et al. 2007
M. mastoidea		
Fe	15.60	(Colak et al. 2007)
	194.70	(Kaya and Bag 2010)
Cd	2.20	(Colak et al. 2007)
Cr	1127.00	(Kaya and Bag 2010)
Se	_	-
Р	-	-
Cu	45.59	Kaya and Bag 2010
	8.20	Colak et al. 2007
Mn	16.49	Kaya and Bag 2010
	48.50	Colak et al. 2007
Zn	31.38	Kaya and Bag 2010
	34.40	Colak et al. 2007
Al	204.10	Kaya and Bag 2010
Ca	-	-
Mg	-	-
ĸ	-	-
P. vorax		
No literature data available		

Table 5 (continued)

Metal	Concentration (mg·kg ⁻¹)	Reference
P. limonella		
No literature data available		
R. anthracina		
No literature data mailable		
R grata		
No literature data available		
S. granulatus		
Fe	193.38	Mushtaq et al. 2020
	458.00	Gençcelep et al. 2009
Cd	1.35	Mushtaq et al. 2020
Cr	48.82	Mushtaq et al. 2020
Se	-	-
Р	4.49	Gençcelep et al. 2009
Cu	9.37	Mushtaq et al. 2020
	107.00	Gençcelep et al. 2009
Mn	30.30	Gençcelep et al. 2009
	94.01	Mushtaq et al. 2020
Zn	28.27	Mushtaq et al. 2020
	169.00	Gençcelep et al. 2009
Al	-	-
Ca	0.46	Gençcelep et al. 2009
Mg	-	-
K	29.10	Gençcelep et al. 2009
T. atrotomentosa		
Fe	137.00	Sarikurkcu et al. 2020
Cd	0.53	Sarikurkcu et al. 2020
Cr	-	-
Se	-	-
Р	-	-
Cu	2.60	Elekes et al. 2010
	3.90	Sarikurkcu et al. 2020
Mn	7.80	Sarikurkcu et al. 2020
Zn	0.11	Elekes et al. 2010
	0.32	Elekes et al. 2010
	26.90	Sarikurkcu et al. 2020
Al	-	-
Ca	-	-
Mg	-	-
K	-	-
T. imbricatum	(0.00)	0 1: 0007
Fe	68.90	Sesii 2007
Cd	744.00	Dogan et al. 2012
Ca	-	-
So.	-	-
D	- 7755.00	- Doğan et al. 2012
r Cu	10.60	Secli 2007
Mn	16.00	Doğan et al. 2012
	17.50	Sesli 2007
Zn	165.00	Sesli 2007
Al	330.00	Sesli 2007
Ca	-	-
Mø	-	-
ĸ	24,217.00	Doğan et al. 2012
	,	- "Bun or un

The metal contents of mushrooms were given in ascending order

contents of *S. granulatus*; Cr, Se, P, Al, Ca, Mg, and K contents of *T. atrotomentosa*; and Cd, Cr, Se, Ca, and Mg contents of *T. imbricatum* have been studied for the first time.

Fe

Fe is found in the structure of hemoglobin, whose main function is to carry oxygen, and therefore is an important element. It is known that about 70% of the Fe in the human body is used for hemoglobin production. Fe is the main structural component of myoglobin, which is abundant in muscle cells, as well as hemoglobin. Fe deficiency causes anemia in organisms (Gupta 2014). The Fe contents of the mushrooms analyzed in the present study were found to range between 18.00 (*P. limonella*) and 1239.10 (*P. vorax*) mg·kg⁻¹. According to the literature data, Fe concentrations of the mushroom samples were between 0.04 and 10,558.00 mg·kg⁻¹ (Niemiec et al. 2018; Rasalanavho et al. 2020).

Cd

Cd is a toxic element to humans. It can accumulate in kidneys and proximal tubule cells under Cd-contaminated environmental conditions. Depending on the amount, it may cause bone damage/demineralization and kidney dysfunction. Exposure to Cd through inhalation, as a result of industrial activities, can also affect lung function and cause lung cancer (Bernard 2008). As can be seen from Table 1, the Cd content of mushroom species was between 0.15 and 4.56 mg·kg⁻¹. It was determined that the mushroom with the lowest Cd content was *T. imbricatum*, while that with the highest was *R. grata*. According to the literature data, the Cd content of mushroom samples was between 0.01 and 7.50 mg·kg⁻¹ (Rubio et al. 2018; Sesli and Dalman 2006).

Cr

Cr is one of the minerals the body needs in order to fulfill its normal physiological conditions. Therefore, it is necessary to have trace amounts of Cr in the body. Especially individuals who act actively in their daily life need more of this element to meet their increasing energy needs and to maintain their working performance. Cr also plays an important role in lipid and protein metabolism. In addition, Cr + 3 is known to help insulin function. However, Cr + 6 is toxic and can cause cancer (Achmad and Auerkari 2017). In the present study, the Cr concentrations of the mushrooms were between 0.05 (*C. nebularis*) and 3.36 (*L. salmonicolor*) $mg \cdot kg^{-1}$. Literature data showed that the Cr content of mushrooms in question ranged from 0.04 to 1127.0 $mg \cdot kg^{-1}$ (Aloupi et al. 2012; Kaya and Bag 2010).

Se

Se is an important element found in the body in fairly low concentrations but fulfills very important biological functions. Since Se supports the functions of enzymes, hormones, and vitamins, it plays a role in catalytic, structural, and regulatory processes. In addition, it helps many biochemical reactions to take place in a healthy way in organisms (Sobolev et al. 2018). As a result of the elemental analysis of the mushroom samples, it was determined that the Se contents were between 0.21 and 3.22 mg·kg⁻¹. While *L. salmanicolor* had the lowest Se content, the species with the highest Se concentration was *C. rhacodes*. As understood from previous studies, the Se contents of the mushrooms analyzed in the present study were between 0.05 and 12.50 mg·kg⁻¹ (Konuk et al. 2007; Rasalanavho et al. 2020).

Ρ

P is an element that is vital to human life. Monomers of genetic material of organisms contain this element. Therefore, P is the structural component of DNA and RNA. P is also the structural component of phospholipids and key players in energy metabolism such as ATP and GTP. Excessive exposure to P is toxic to humans, and it has been reported that over 1 mg·kg⁻¹ is an acute lethal dose (Anderson and Garner 1995). In the present study, P concentrations of mushroom species were between 1.04 (G. sepiarium) and 8.90 (C. rhacodes) mg·kg⁻¹. Literature data showed that the concentration of this element in these mushrooms was between 3.0 and 7755.0 mg·kg⁻¹ (Doğan et al. 2012; Gaso et al. 2007). In the literature, it was determined that the P contents of the mentioned mushrooms were quite variable (e.g., as in the P content of T. imbricatum (7755.0 mg·kg ¹)). This may be due to the capacity of the mushroom to accumulate the relevant element or the ecosystem in which the mushroom grows or may be due to the errors that occur during elemental analysis.

Cu

Cu is an extremely important element for human metabolism as it enables many critical enzymes to function properly. In addition, it has a positive effect on the skin, epithelium, and connective tissues. It plays a role in the production processes of critical molecules such as hemoglobin, myelin, and melanin and is essential for the normal functions of the thyroid gland. Cu is also an essential part of the body's antioxidant defense system (Osredkar and Sustar 2011). According to the data in Table 2, the Cu contents of the mushroom species were between 3.27 and 59.87 mg·kg⁻¹. Mushrooms with minimum and maximum Cu contents were *H. pudorinus* and *C. rhacodes*, respectively. According to the literature data, the Cu contents of the mushrooms were between 0.02 and 107.0 mg·kg⁻¹ (Gençcelep et al. 2009; Konuk et al. 2007).

Mn

Mn is usually taken into the body with food and water. During digestion, it is absorbed through the gastrointestinal system and transported to the mitochondria in the cells of some organs such as the liver, pancreas, and pituitary gland (Deng et al. 2013). This element plays a critical role in both the synthesis and activation of a large number of enzymes, such as oxidoreductases, transferases, hydrolases, lyases, isomerases, and ligases. Mn is also needed for the synthesis of some vitamins (examples, B and C) and proteins and for the effective functioning of the immune system (Aschner and Aschner 2005). As a result of acute exposure to Mn, a disorder called manganism may occur (Koh et al. 2014). According to the literature data, the Mn contents of the mushrooms examined in the present study were between 0.36 and 714.0 mg·kg⁻¹ (Konuk et al. 2007; Niemiec et al. 2018). The mushroom with the lowest Mn content was C. *truncatus* with 3.69 mg·kg⁻¹, while the mushroom with the highest Mn content was G. triplex with 220.44 mg·kg⁻¹.

Zn

Defined as a basic trace element or a micronutrient, Zn is of great importance in the growth and development of all highstructured plants and animals. In particular, it takes an active part in many physiological processes and helps the immune system. Zn is critical in the functioning of hundreds of different enzymes, DNA stabilization, and gene expression (Frassinetti et al. 2006). In the present study, the Zn contents of the mushrooms ranges between 21.3 and 154.1 mg·kg⁻¹. The mushroom species with the lowest and highest Zn contents were *P. vorax* and *C. rhacodes*, respectively. According to the literature data, the Zn contents of the mushroom species were between 0.11 and 212.53 mg·kg⁻¹ (Elekes et al. 2010; Rasalanavho et al. 2020).

AI

Although organisms contain some Al, this element is not considered as an essential element for biological systems since it does not take part in any biological process in the human body. There is also no evidence that any organism used Al in the evolutionary period. Thus, although Al is abundant in the environment, it is characterized as a biochemical paradox due to its lack of biological function (Macdonald and Martin 1988). According to the data in Table 3, it was determined that the mushroom with the lowest Al content was *T. atrotomentosa* ($6.4 \text{ mg} \cdot \text{kg}^{-1}$). The mushroom species with the highest Al content was *P. vorax* (754.3 mg $\cdot \text{kg}^{-1}$). According to the data in the literature, the Al content of mushrooms was between 0.7 and 330.0 mg $\cdot \text{kg}^{-1}$ (Gaso et al. 2007; Sesli 2007).

Са

Ca in the form of Ca^{2+} is an important element for both the biochemistry and physiology of organisms. Its most distinctive feature is that it acts as secondary messenger in signal transmission paths. In this way, it plays critical roles in neurotransmitter release, contraction of muscle cells, and fertilization. In addition, many enzymes and coagulation factors that take part in normal metabolic functions use Ca as a cofactor. Ca also contributes to the formation of membrane potential across cell membranes and bone development (Peacock 2010). According to the literature data, the Ca content of the mushrooms in the present study were between 0.46 and 548.2 mg kg^{-1} (Cvetkovic et al. 2015; Gençcelep et al. 2009). In the present study, Ca contents of mushroom species were between 15.8 and 17,473.0 mg kg^{-1} . Ca contents of G. triplex (1946.8 mg·kg⁻¹), G. sepiarium $(7180.2 \text{ mg}\cdot\text{kg}^{-1})$, and *P. vorax* $(17,472.9 \text{ mg}\cdot\text{kg}^{-1})$ were higher than the literature data. This situation was thought to be due to the mineral composition of the soil on which these mushroom species grow.

Mg

Mg in the form of Mg²⁺ is an essential element for life and is present in every cell type. Mg, which is one of the elements that ATP needs to be active biologically, is an important part of energy metabolism. Therefore, it is possible to actually call the molecule known as ATP as Mg-ATP. Mg is the main player in the stability of all polyphosphate compounds in cells (Leroy 1926). Gaso et al. (2007) and Jedidi et al. (2017) reported that minimum and maximum Mg contents of the mushroom species analyzed in the present study were 0.6 and 1624.68 mg·kg⁻¹, respectively. Here, the Mg contents of mushrooms were found to be between 413.0 (*S. granulatus*) and 5943.0 mg·kg⁻¹ (*P. vorax*).

Κ

K is the basic cation found in animal cells. The difference between Na, another cation, and the concentrations of this element enables the formation of the membrane potential (Santos et al. 2012). When not enough K is taken, there may be an increased risk of hypertension, stroke, and cardiovascular disease. In case of excessive intake, problems such as abdominal pain, nausea, vomiting, and diarrhea may occur (Aburto et al. 2013; D'Elia et al. 2011). K content data obtained from the present study were found to be compatible with the literature data. According to the literature data, the K content of the mushroom species in question was between 16.29 and 59,406.0 mg·kg⁻¹ (Rasalanavho et al. 2020; Sesli et al. 2008). According to the data in Table 3, the K content of the mushroom species was between 2803.0 and 24,490.0 mg·kg⁻¹. The K content of *G. sepiarium* was the lowest, while that of *A. pantherina* was the highest.

DIM and HRI of the mushrooms

In addition to the elemental contents of the mushrooms collected from Ilgaz Mountain National Park, DIM and HRI values of edible ones were also calculated based on these data. According to the data presented in Table 4, it has been determined that both DIM and HRI values of mushroom species except *L. salmanicolor*, *M. mastoidea*, and *R. grata* were within the legal limits determined by JECFA (1993) and USEPA (2002). However, it was determined that the Fe content of *L. salmanicolor* and *M. mastoidea* was above the limits set by JECFA (1993). A similar situation is valid for the Cd content of *R. grata* (USEPA 2002). Although it is necessary to pay attention to the consumption of all three mushrooms, the Cd content of *R. grata* should be checked especially before consuming.

Conclusions

As a result of the data presented above, it was concluded that the Fe concentrations of *L. salmanicolor* and *M. mastoidea* and Cd content *R. grata* collected from Ilgaz Mountain National Park (Western Black Sea, Turkey) exceed the legal limits set by JECFA (1993) and USEPA (2002). It has been concluded that the Cd content of *R. grata* should be monitored carefully since this element causes acute and chronic toxicity due to biomagnification and can inhibit biosynthesis reactions if it accumulates in the human body.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11356-021-18011-2.

Author contributions CS and AD carried out the conceptualization and research, formal analysis, and writing of the original draft. FK, AD, and IA conducted literature research, conceptualization, visualization, and data analysis. AST and CS contributed to the conceptualization, writing-reviewing, and editing processes.

Funding Not applicable (this study was not carried out with the financial contribution of any institution or organization).

Data availability All data generated or analyzed during this study are included in this published article and its supplementary information file.

Declarations

Ethics approval and consent to participate Not applicable (this paper does not contain studies involving human participants, human data, or human tissue).

Consent to publish Not applicable (this paper does not contain any individual person's data in any form).

Competing interests The authors declare no competing interests.

References

- Abdel-Azeem AM, Abdel-Moneim TS, Ibrahim ME, Hassan MAA, Saleh MY (2007) Effects of long-term heavy metal contamination on diversity of terricolous fungi and nematodes in Egypt - a case study. Water Air Soil Pollut 186:233–254. https://doi. org/10.1007/s11270-007-9480-3
- Aburto NJ, Hanson S, Gutierrez H, Hooper L, Elliott P, Cappuccio FP (2013) Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and metaanalyses. BMJ 346:f1378
- Achmad RT, Auerkari EI (2017) Effects of chromium on human body. Annu Res Rev Biol 13:1–8
- Agrawal DC, Dhanasekaran M (2019) Medicinal mushrooms: Recent Progress in Research and Development. Springer
- Alonso J, Garcia MA, Perez-Lopez M, Melgar MJ (2003) The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Arch Environ Contam Toxicol 44:180–188. https://doi.org/10.1007/s00244-002-2051-0
- Aloupi M, Koutrotsios G, Koulousaris M, Kalogeropoulos N (2012) Trace metal contents in wild edible mushrooms growing on serpentine and volcanic soils on the island of Lesvos, Greece. Ecotoxicol Environ Saf 78:184–194. https://doi.org/10.1016/j.ecoenv.2011.11.018
- Anderson JJ, Garner SC (1995) Calcium and phosphorus in health and disease, vol 10. CRC Press
- Aschner JL, Aschner M (2005) Nutritional aspects of manganese homeostasis. Mol Aspects Med 26:353–362
- Ayaz FA, Torun H, Ozel A, Col M, Duran C, Sesli E, Colak A (2011) Nutritional value of some wild edible mushrooms from Black Sea Region (Turkey). Turkish J Biochem 36:213–221
- Bernard A (2008) Cadmium & its adverse effects on human health. Indian J Med Res 128:557–564
- Campos JA, Tejera NA (2011) Bioconcentration factors and trace elements bioaccumulation in sporocarps of fungi collected from quartzite acidic soils. Biol Trace Elem Res 143:540–554. https://doi.org/10.1007/s12011-010-8853-4
- Campos JA, Tejera NA, Sanchez CJ (2009) Substrate role in the accumulation of heavy metals in sporocarps of wild fungi. Biometals 22:835–841. https://doi.org/10.1007/s10534-009-9230-7
- Carvalho ML, Pimentel AC, Fernandes B (2005) Study of heavy metals in wild edible mushrooms under different pollution conditions by X-ray fluorescence spectrometry. Anal Sci 21:747– 750. https://doi.org/10.2116/analsci.21.747
- Cayir A, Coskun M, Coskun M (2010) The heavy metal content of wild edible mushroom samples collected in Canakkale Province, Turkey. Biol Trace Elem Res 134:212–219. https://doi. org/10.1007/s12011-009-8464-0

- Chowaniak M, Niemiec M, Paluch Ł (2017) Bioconcentration of cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) in Lactarius salmonicolor in the Western Carpathians. J Elem 22:1537–1547
- Colak A, Faiz O, Sesli E (2009) Nutritional composition of some wild edible mushrooms. Turkish J Biochem 34:25–31
- Colak A, Kolcuoğlu Y, Sesli E (2007) Biochemical composition of some Turkish fungi. Asian J Chem 19:2193–2199
- Cui Y-J, Zhu Y-G, Zhai R-H, Chen D-Y, Huang Y-Z, Qiu Y, Liang J-Z (2004) Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environ Int 30:785–791. https://doi.org/10.1016/j.envint.2004.01.003
- Cvetkovic JS, Mitic VD, Stankov-Jovanovic VP, Dimitrijevic MV, Nikolic-Mandic SD (2015) Elemental Composition of wild edible mushrooms from Serbia. Anal Lett 48:2107–2121. https:// doi.org/10.1080/00032719.2015.1010118
- D'Elia L, Barba G, Cappuccio FP, Strazzullo P (2011) Potassium intake, stroke, and cardiovascular disease: a meta-analysis of prospective studies. J Am Coll Cardiol 57:1210–1219
- De Silva DD, Rapior S, Sudarman E, Stadler M, Xu JC, Alias SA, Hyde KD (2013) Bioactive metabolites from macrofungi: ethnopharmacology, biological activities and chemistry. Fungal Divers 62:1–40. https://doi.org/10.1007/s13225-013-0265-2
- Demirbas A (2000) Accumulation of heavy metals in some edible mushrooms from Turkey. Food Chem 68:415–419. https://doi. org/10.1016/s0308-8146(99)00210-1
- Demirbas A (2003) Trace metal concentrations in ashes from various types of biomass species. Energy Sources 25:743–751. https:// doi.org/10.1080/00908310390212435
- Demirbaş A (2001a) Concentrations of 21 metals in 18 species of mushrooms growing in the East Black Sea region. Food Chem 75:453–457
- Demirbaş A (2001b) Heavy metal bioaccumulation by mushrooms from artificially fortified soils. Food Chem 74:293–301
- Deng Q et al (2013) Interaction of occupational manganese exposure and alcohol drinking aggravates the increase of liver enzyme concentrations from a cross-sectional study in China. Environ Health 12:30
- Dogan HH, Sanda MA, Uyanboz R, Ozturk C, Cetin U (2006) Contents of metals in some wild mushrooms - its impact in human health. Biol Trace Elem Res 110:79–94. https://doi.org/10.1385/ bter:110:1:79
- Doğan HH, Şanda MA, Akata I (2012) Mn, Fe, K, Na, and P contents in some Tricholoma (Fr.) staude (Tricholomataceae) taxa from central Anatolia. Turkey Fresenius Environ Bull 21:3389–3393
- Duru ME, Cayan GT (2015) Biologically active terpenoids from mushroom origin: a review. Rec Nat Prod 9:456–483
- Elekes CC, Busuioc G, Ionita G (2010) The bioaccumulation of some heavy metals in the fruiting body of wild growing mushrooms. Not Bot Horti Agrobot Cluj Napoca 38:147–151
- Falandysz J, Borovicka J (2013) Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Appl Microbiol Biotechnol 97:477–501. https://doi.org/10.1007/ s00253-012-4552-8
- Falandysz J, Kunito T, Kubota R, Gucia M, Mazur A, Falandysz JJ, Tanabe S (2008) Some mineral constituents of parasol mushroom (Macrolepiota procera). J Environ Sci Health B 43:187–192. https://doi.org/10.1080/03601230701795247
- Frassinetti S, Bronzetti G, Caltavuturo L, Cini M, Della Croce C (2006) The role of zinc in life: a review. J Environ Pathol Toxicol Oncol 25:597–610. https://doi.org/10.1615/JEnvironPatholToxicolOncol.v25.i3.40
- Gargano ML, van Griensven L, Isikhuemhen OS, Lindequist U, Venturella G, Wasser SP, Zervakis GI (2017) Medicinal mushrooms: valuable biological resources of high exploitation potential. Plant Biosyst 151:548–565. https://doi.org/10.1080/11263504.2017.1 301590

- Gaso M, Segovia N, Morton O, Lopez JL, Machuca A, Hernandez E (2007) Radioactive and stable metal bioaccumulation, crystalline compound and siderophore detection in Clavariadelphus truncatus. J Environ Radioact 97:57–69
- Gençcelep H, Uzun Y, Tunçtürk Y, Demirel K (2009) Determination of mineral contents of wild-grown edible mushrooms. Food Chem 113:1033–1036
- Gezer K, Kaygusuz O (2014) An assessment of the heavy metal content of various wild edible mushrooms in the Denizli province, Turkey. J Environ Prot Ecol 15:425–432
- Gramss G, Voigt K-D (2013) Clues for regulatory processes in fungal uptake and transfer of minerals to the basidiospore. Biol Trace Elem Res 154:140–149
- Guggenheim AG, Wright KM, Zwickey HL (2014) Immune modulation from five major mushrooms: application to integrative oncology. Integr Med 13:32
- Guillamon E, Garcia-Lafuente A, Lozano M, D'Arrigo M, Rostagno MA, Villares A, Martinez JA (2010) Edible mushrooms: role in the prevention of cardiovascular diseases. Fitoterapia 81:715– 723. https://doi.org/10.1016/j.fitote.2010.06.005
- Gupta CP (2014) Role of iron (Fe) in body. (IOSR-JAC 7:38-46
- Huang QQ, Jia Y, Wan YA, Li HF, Jiang RF (2015) Market survey and risk assessment for trace metals in edible fungi and the substrate role in accumulation of heavy metals. J Food Sci 80:H1612– H1618. https://doi.org/10.1111/1750-3841.12923
- Isildak O, Turkekul I, Elmastas M, Tuzen M (2004) Analysis of heavy metals in some wild-grown edible mushrooms from the Middle Black Sea region, Turkey. Food Chem 86:547–552. https://doi. org/10.1016/j.foodchem.2003.09.007
- Jamnická G, Bučinová K, Havranová I, Urban A (2007) Current state of mineral nutrition and risk elements in a beech ecosystem situated near the aluminium smelter in Žiar nad Hronom, Central Slovakia. For Ecol Manage 248:26–35
- JECFA (1993) Joint FAO/WHO expert Committee on Food Additives. Evaluation of certain food additives and contaminants: 41st report of the Joint FAO/WHO expert Committee on Food Additives. World Health Organization, Technical Reports Series No. 837, Geneva
- Jedidi IK, Ayoub IK, Philippe T, Bouzouita N (2017) Chemical composition and nutritional value of three Tunisian wild edible mushrooms. J Food Meas Charact 11:2069–2075. https://doi.org/10. 1007/s11694-017-9590-6
- Joshi PK, Swarup A, Maheshwari S, Kumar R, Singh N (2011) Bioremediation of heavy metals in liquid media through fungi isolated from contaminated sources. Indian J Microbiol 51:482–487. https://doi.org/10.1007/s12088-011-0110-9
- Kalac P (2001) A review of edible mushroom radioactivity. Food Chem 75:29–35. https://doi.org/10.1016/s0308-8146(01)00171-6
- Kalac P (2010) Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000–2009. Food Chem 122:2–15. https://doi.org/10.1016/j. foodchem.2010.02.045
- Kalac P, Svoboda L (2000) A review of trace element concentrations in edible mushrooms. Food Chem 69:273–281. https://doi. org/10.1016/s0308-8146(99)00264-2
- Karaman M, Novakovic M, Matavuly M (2012) Fundamental fungal strategies in restoration of natural environment. In: Silva AP, Sol M (eds) Fungi: Types, environmental impact and role in disease: Nova Science Publishers Inc, New York
- Kaya A, Bag H (2010) Trace element contents of edible macrofungi growing in Adiyaman. Turkey Asian J Chem 22:1515
- Koh ES et al (2014) Association of blood manganese level with diabetes and renal dysfunction: a cross-sectional study of the Korean general population. BMC Endo Dis 14:1–8
- Konuk M, Afyon A, Yagiz D (2007) Minor element and heavy metal contents of wild growing and edible mushrooms from

Western Black Sea Region of Turkey. Fresenius Environ Bull 16:1359–1362

- Kosanic M, Rankovic B, Rancic A, Stanojkovic T (2016) Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. J Food Drug Anal 24:477–484. https:// doi.org/10.1016/j.jfda.2016.01.008
- Leroy J (1926) Necessite du magnesium pour la croissance de la souris. C R Seances Soc Biol Fil 94:431
- Li XZ et al (2017) Mechanisms of Cd and Cr removal and tolerance by macrofungus Pleurotus ostreatus HAU-2. J Hazard Mater 330:1–8. https://doi.org/10.1016/j.jhazmat.2017.01.047
- Liu B, Huang Q, Cai H, Guo X, Wang T, Gui M (2015) Study of heavy metal concentrations in wild edible mushrooms in Yunnan Province, China. Food Chem 188:294–300. https://doi.org/10.1016/j. foodchem.2015.05.010
- Macdonald TL, Martin RB (1988) Aluminum ion in biological systems. Trends Biochem Sci 13:15–19
- Mleczek M et al (2016a) Multielemental analysis of 20 mushroom species growing near a heavily trafficked road in Poland. Environ Sci Pollut Res 23:16280–16295. https://doi.org/10.1007/ s11356-016-6760-8
- Mleczek M et al (2016b) The role of selected tree species in industrial sewage sludge/flotation tailing management. Int J Phytorem 18:1086–1095. https://doi.org/10.1080/15226514.2016.1183579
- Mleczek M, Siwulski M, Stuper-Szablewska K, Rissmann I, Sobieralski K, Golinski P (2013a) Accumulation of elements by edible mushroom species: Part I. Problem of trace element toxicity in mushrooms. J Environ Sci Health B 48:69–81. https://doi.org/ 10.1080/03601234.2012.716733
- Mleczek M, Siwulski M, Stuper-Szablewska K, Sobieralski K, Magdziak Z, Golinski P (2013b) Accumulation of elements by edible mushroom species II. A comparison of aluminium, barium and nutritional element contents. J Environ Sci Health B 48:308–317. https://doi.org/10.1080/03601234.2013.743799
- Murati E, Hristovski S, Karadelev M, Melovski L (2019) The impact of thermal power plant Oslomej (Kichevo valley, Macedonia) on heavy metal contents (Ni, Cu, Zn, Fe, Mn, Pb, Cd) in fruiting bodies of 15 species of wild fungi. Air Qual Atmos Health 12:353–358
- Murati E, Hristovski S, Melovski L, Karadelev M (2015) Heavy metals content in Amanita pantherina in a vicinity of the thermo-electric power plant Oslomej, Republic of Macedonia. Fresenius Environ Bull 24:1981–1984
- Mushtaq W, Hayri B, Akata İ, Sevindik M (2020) Antioxidant potential and element contents of wild edible mushroom Suillus granulatus. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi 23:592–595
- Niemiec M, Chowaniak M, Paluch Ł (2017) Accumulation of chromium, aluminum, barium and arsenic in selected elements of a forest ecosystem in the Przedbabiogórskie Mountain Range in the Western Carpathians. J Elem 22:1107–1116
- Niemiec M, Sikora J, Chowaniak M, Szelag-Sikora A, Kubon M (2018) Bioaccumulation of Iron, Manganese, Boron, Lithium and Cobalt in Lactarius salmonicolor and Abies alba M. in the Przedbabiogorski Range in the Western Carpathians. Rocz Ochr Srodowiska 20:1386–1401
- Osredkar J, Sustar N (2011) Copper and zinc, biological role and significance of copper/zinc imbalance. J Clin Toxicol 3:0495
- Ouzouni PK, Veltsistas PG, Paleologos EK, Riganakos KA (2007) Determination of metal content in wild edible mushroom species from regions of Greece. J Food Compost Anal 20:480–486
- Paterson RRM, Lima N (2014) Biomedical effects of mushrooms with emphasis on pure compounds. Biomed J 37:357–368
- Peacock M (2010) Calcium metabolism in health and disease. Clin J Am Soc Nephrol 5:S23–S30

- Phan CW, David P, Naidu M, Wong KH, Sabaratnam V (2015) Therapeutic potential of culinary-medicinal mushrooms for the management of neurodegenerative diseases: diversity, metabolite, and mechanism. Crit Rev Biotechnol 35:355–368. https://doi.org/10. 3109/07388551.2014.887649
- Plassard C, Louche J, Ali MA, Duchemin M, Legname E, Cloutier-Hurteau B (2011) Diversity in phosphorus mobilisation and uptake in ectomycorrhizal fungi. Ann for Sci 68:33–43. https:// doi.org/10.1007/s13595-010-0005-7
- Radulescu C, Stihi C, Busuioc G, Popescu IV, Gheboianu AI, Cimpoca VG (2010) Evaluation of essential elements and heavy metal levels in fruiting bodies of wild mushrooms and their substrate by EDXRF spectrometry and FAA spectrometry. Rom Biotechnol Lett 15:5444–5456
- Rakic M, Karaman M, Forkapic S, Hansman J, Kebert M, Bikit K, Mrdja D (2014) Radionuclides in some edible and medicinal macrofungal species from Tara Mountain, Serbia. Environ Sci Pollut Res 21:11283–11292. https://doi.org/10.1007/s11356-014-2967-8
- Rasalanavho M, Moodley R, Jonnalagadda SB (2019) Elemental distribution including toxic elements in edible and inedible wild growing mushrooms from South Africa. Environ Sci Pollut Res 26:7913–7925
- Rasalanavho M, Moodley R, Jonnalagadda SB (2020) Elemental bioaccumulation and nutritional value of five species of wild growing mushrooms from South Africa. Food Chem 319:126596. https:// doi.org/10.1016/j.foodchem.2020.126596
- Rashid MH, Rahman MM, Correll R, Naidu R (2018) Arsenic and other elemental concentrations in mushrooms from Bangladesh: health risks. Int J Env Res Public Health 15:919. https://doi.org/ 10.3390/ijerph15050919
- Rubio C et al (2018) Trace element and toxic metal intake from the consumption of canned mushrooms marketed in Spain. Environ Monit Assess 190:237. https://doi.org/10.1007/ s10661-018-6614-6
- Rzymski P, Mleczek M, Siwulski M, Gasecka M, Niedzielski P (2016) The risk of high mercury accumulation in edible mushrooms cultivated on contaminated substrates. J Food Compost Anal 51:55–60. https://doi.org/10.1016/j.jfca.2016.06.009
- Santos JS et al (2012) Crystal structure of a voltage-gated K⁺ channel pore module in a closed state in lipid membranes. J Biol Chem 287:43063–43070
- Sarikurkcu C, Akata I, Guven G, Tepe B (2020) Metal concentration and health risk assessment of wild mushrooms collected from the Black Sea region of Turkey. Environ Sci Pollut Res 27:26419– 26441. https://doi.org/10.1007/s11356-020-09025-3
- Sarikurkcu C, Copur M, Yildiz D, Akata I (2011) Metal concentration of wild edible mushrooms in Soguksu National Park in Turkey. Food Chem 128:731–734. https://doi.org/10.1016/j. foodchem.2011.03.097
- Sarikurkcu C, Tepe B, Kocak MS, Uren MC (2015) Metal concentration and antioxidant activity of edible mushrooms from Turkey. Food Chem 175:549–555. https://doi.org/10.1016/j.foodchem. 2014.12.019
- Sarikurkcu C, Tepe B, Solak MH, Cetinkaya S (2012) Metal concentrations of wild edible mushrooms from Turkey. Ecol Food Nutr 51:346–363. https://doi.org/10.1080/03670244.2012.674448
- Sesli E (2007) Trace metal contents of higher fungi from Zigana Highland in Turkey. Asian J Chem 19:636
- Sesli E, Dalman O (2006) Concentrations of trace elements in fruiting bodies of wild growing fungi in Rize province of Turkey. Asian J Chem 18:2179–2184
- Sesli E, Tuzen M (2006) Micro- and macroelement contents of edible wild growing mushrooms in Artvin province of Turkey. Asian J Chem 18:1423–1429
- Sesli E, Tuzen M, Soylak M (2008) Evaluation of trace metal contents of some wild edible mushrooms from Black sea region, Turkey. J Hazard Mater 160:462–467

- Severoglu Z, Sumer S, Yalcin B, Leblebici Z, Aksoy A (2013) Trace metal levels in edible wild fungi. Int J Environ Sci Technol 10:295–304. https://doi.org/10.1007/s13762-012-0139-2
- Šíma J, Vondruška J, Svoboda L, Šeda M, Rokos L (2019) The accumulation of risk and essential elements in edible mushrooms Chlorophyllum rhacodes, Suillus grevillei, Imleria badia, and Xerocomellus chrysenteron growing in the Czech Republic. Chem Biodivers 16:e1800478
- Siric I, Kasap A, Kos I, Markota T, Tomic D, Poljak M (2016) Heavy metal contents and bioaccumulation potential of some wild edible mushrooms. Sumarski List 140:29–37
- Sobolev O et al (2018) Biological role of selenium in the organism of animals and humans. Ukr J Ecol 8:654–665. https://doi.org/10. 15421/2018_263
- Tuzen M, Sesli E, Soylak M (2007) Trace element levels of mushroom species from East Black Sea region of Turkey. Food Control 18:806–810
- Tüzen M, Özdemir M, Demirbaş A (1998) Study of heavy metals in some cultivated and uncultivated mushrooms of Turkish origin. Food Chem 63:247–251

- USEPA (2002) A review of the reference dose and reference concentration processes
- Vetter J (1997) Chromium and nickel contents of some common edible mushroom species. Acta Aliment 26:163–170
- Xu Z et al. (2019) Chemical composition, antioxidant and antihyperglycemic activities of the wild Lactarius deliciosus from China. Molecules 24. https://doi.org/10.3390/molecules24071357
- Zavastin DE, Miron A, Gherman SP, Boerescu CM, Breaban IG, Gavrilescu CM (2015) Antioxidant activity, total phenolic and metals contents of Lactarius salmonicolor (R. Heim & Leclair). Farmacia 63:755–759

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.