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nanotubes can show significant electrical conductivity [8]. 
Also, their tensile strength [9] and thermal conductivity 
[10] are outstanding due to their nanostructure and the 
strength of the bonds between carbon atoms. Because of 
these properties of CNs, they can be utilized in many areas 
of technology from biomedicine to nanoelectronics.
3.2.3. Metal-oxide
Metal-oxide NPs are used as industrial catalysts. TiO2 
nanoparticles may disrupt insulin response in Fao cells 
and cause pregnancy complications in some animal model 
studies [11, 12]. Studies have showed that other metal-
oxide nanoparticles have adverse effects on reproduction 
and neonatal development [13, 14].
3.2.4. Quantum dots
Quantum dots are engineered nanoscale crystals that can 
transport electrons and they can covert a spectrum of light 
into different colors. Quantum dots make possible to study 
cell processes and may notably improve the diagnosis and 
treatment of diseases such as cancers [15,16]. Some studies 

showed that QDs have effects on reproductive dysfunction, 
TH signaling, estrogen receptor activation, and endocrine 
impairing activity [17–19]. Biological effects due to 
chemical composition of nanomaterials are summarized 
in Figure 2 [20–25].

4. Nanoparticle
The International Organization for Standardization (ISO) 
defines the nanoparticle as a nanoobject with all three 
external dimensions in the nanoscale of about 1 to 100 nm 
[26, 27]. They can be found naturally in nature, but they 
are also produced industrially. 

5. Nanotoxicity
5.1. Definition
Nanotoxicology focuses on determining the adverse 
effects of nanomaterials on human health and the 
environment. Nanotoxicology searches for establishing 
and identifying the harms of engineered nanomaterials 
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Figure 2. Biological effects due to chemical composition of nanomaterials.
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and requires a multidisciplinary team approach including 
toxicology, biology, chemistry, physics, material science, 
geology, exposure assessment, pharmacokinetics, and 
medicine [28]. Engineered nanomaterials are used in 
many fields such as automotive and aerospace (car 
tires, glass, fuel cells), agriculture (food processing, 
production, packaging, storage), construction (cement-
based material, insulation, exterior, self-cleaning glass and 
paint, etc.), energy (thermoelectric, solar cells, long-life 
batteries, fossil fuel, nuclear energy), health and medicine 
(diagnosis, treatment, regenerative medicine, surgery, 
implant), information and communication (flat TV 
screens, electronic devices), security and defense industry 
(detection, protection, localization, unmanned combat 
vehicles), textiles (self-cleaning or stain-free products), 
cosmetics (sunscreens, toothpaste, make-up products), 
etc. [29]

On the one hand, while it is used in the diagnosis 
and treatment of diseases in the field of biomedicine, 
doubts have begun to arise that it may cause diseases. The 

painful experience of human beings with carcinogenic 
products such as tobacco products and asbestos, which 
they initially thought innocent, also caused a question 
mark for NPs. Because some NPs have long, thin, fibrous 
structure asbestos-like, show fibrogenic and toxic effects 
“Can nanoparticles be asbestos of the future?” caused the 
question to be asked [30].

Factors such as exposure time, dose, aggregation 
and concentration, particle size and shape, surface area 
and charge play a key role in the toxicity assessment of 
nanomaterials [31].
5.2. Factors 
5.2.1. Size
There are several ways that size can affect the toxicity 
of a nanoparticle and showed in Figure 3 [32–37]. For 
example, the reduction in size of the nanomaterials results 
an increase in the particle surface area. This causes more 
molecules to bind to the surface area, so results in an 
increase in toxic effect [38]. Particles of different sizes can 

 

Size 

Physicochemical property Toxicokinetic findings Biological effects 

15 nm gold NPs 

Most widespread organ 
distribution including 

blood, liver, lung, spleen, 
kidney, brain, heart, 

stomach in mice 

Biodistribution of the 
nanoparticles 

15-50 nm gold NPs Pass blood–brain barrier 
(BBB) in mice 

Blood brain barrier 
(BBB) permeability 

45-50 nm gold NPs 
Activation of membrane 

receptors in SK-BR-3 
cells 

50 nm gold NPs 
Maximum uptake 

by Hela cells 

50 nm quantum dots 
Efficient 

receptor-mediated 
endocytosis 
in Hela cells 

1-10 nm silver NPs Penetrate inside the 
bacteria 

Exclusively attach to 
HIV-1 

Figure 3. Biological effects due to size of nanomaterials.



1184

AKÇAN et al. / Turk J Med Sci

deposit in various places of the lungs and are cleared from 
the lungs at different rates [39].
5.2.2. Particle surface, surface chemistry and charge
Extended surface area and fine surface structure of the 
NMs are properties that help better interaction between 
microenvironment and nanomaterial biologically. 
Nanomaterials are covered with coatings and according to 
their function; they can be positive or negative charged. 
Electron and atomic force microscopes can be utilized for 
topographic characterization, so surface chemistry can 
be evaluated. Studies have showed that these factors can 
affect the toxicity rate of nanoparticles [40,41]. Biological 
effectsare showed in figure 4 [32, 42–50].
5.2.3. Dosage
Nanomaterials are known to have dose-dependent toxic 
effects by inhalation, and there are many publications 
regarding this issue. Recent studies that the evaluation 
of mass concentration measurement within the scope of 
toxicological dosing alone gives false results and does not 
explain the whole relationship between the nanomaterials 
and exposed tissue [51].
5.3. Exposure routes and ADME
Inhalation is the most common and best-known route 
among nanomaterial exposure ways. In addition, they can 
also enter the human body through the skin, digestion or 
injection.

Nanoparticles are thought to play a role in the 
development of some diseases by acting on the lungs 
and other systems with various pathogenic mechanisms. 
Particles smaller than 0.1 μm can reach distal airways 
with respiratory units [52]. The inhaled NPs come to 
the respiratory epithelium and pass through the pores in 
the alveoli-capillary membrane, first to the interstitium 
and then to the systemic circulation through blood and 
lymphatic circulation. In experiments in mice, it has been 
demonstrated experimentally that NPs applied into the 
trachea pass into systemic circulation in this way [53].

In studies conducted to reveal the possible toxic 
effects of NPs on human health, NPs of different character 
were applied in different ways (inhalation, intratracheal, 
intravenous, intraperitoneal, etc.) and in different doses, 
and parameters such as transition to systemic circulation 
in living organisms, accumulation in tissues, inflammation 
in tissues, other immune responses and excretion of NPs 
from the body have been studied. In a study conducted 
in five healthy volunteers, it has been observed that ultra-
fine carbon particles smaller than 100 nm quickly enter 
the systemic circulation in a short time like 10 minutes 
after inhalation and maintain their level in the systemic 
circulation for about an hour [54]. In a study in mice, 
the 60-day tissue distribution of magnetoelectric NPs of 
different sizes administered intravenously was investigated 

by electron microscopy, in approximately one week all NPs 
reached peak deposition in the lung, but the elimination 
of large particles of 600nm from the lung was slower than 
small particles [55]. 

Nanoparticles with short size and spiral structure 
entering the body are destroyed in tissues by macrophages. 
However, nanotubes with high aspect ratio reach to the 
pleura like asbestos fibers and accumulate around the 
pores there. These fibrous particles cannot be phagocyted, 
and proinflammatory, genotoxic mitogenic mediators are 
released by mesothelial cells. Thus, an inflammation and 
damage process begin [56]. This inflammation that starts 
in the lungs, on the one hand causes pulmonary endothelial 
dysfunction and stimulation of pulmonary reflexes, on 
the other hand activates the platelets and increases the 
thrombotic activity. In addition, inflammation in the 
vascular area can cause vascular endothelial dysfunction, 
causing cardiovascular disorders such as impaired heart 
rate and rhythm, atherosclerotic plaque formation and 
rupture [52]. Nanoparticles stimulate both natural 
and acquired immunity, and causing an inflammatory 
response. Stimulation of both the macrophage/monocyte, 
neutrophil, dendritic, natural killer cells responsible for 
natural immunity and the dendritic cells and lymphocyte 
responsible for acquired immunity, proinflammatory 
cytokines, lipid mediators and free radicals are released, 
resulting in neutrophilic or eosinophilic lung inflammation. 
Immunomodulatory effects of NPs may differ according 
to their physicochemical properties such as size, surface 
structure, electric charge, aggregation ratio [31].

6. Entry routes of nanoparticles into the human body
It is inevitable that the human being, who is a social entity, 
has contact with the nanomaterials around it. A lot of 
research has been conducted about nanomaterials that 
have damage different parts of the body. Nanomaterials 
most often enter the body through the respiratory tract 
and are in intensive contact with the lungs. The entry of 
nanomaterials into the body is also very common through 
skin contact and the gastrointestinal tract. Also, implants 
and injections allow nanomaterials to enter the body [57]. 
6.1. Inhalation exposure
The size of the nanoparticles, its resistance to gravity, and 
its spreading pattern determine the area in which it will 
settle in the respiratory tract. Nanoparticles absorbed into 
the body through the respiratory tract cleaned in different 
parts of the respiratory system by mucociliary layer and 
macrophages or they clustered in the lungs and spread 
to the body with blood circulation [58]. Sajid et al. stated 
that 33% of the inhaled nanoparticles can be removed 
from the body by the defensive system of the respiratory 
tract [59]. Animal studies reported that carbon nanotubes 
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produce fibrosis, inflammation and granuloma in the 
lungs, and these toxic effects in the lungs cause systemic 
cardiovascular disorders [60]. Besides, it was stated that 

the inhaled nanoparticles can reach different organs of the 
body including the brain, and the evaluation of the risk of 
association with prostate cancer was investigated [61,62]. 
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Figure 4. Biological effects due to shape, surface area/volume ratio and charge of nanomaterials.
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6.2. Dermal exposure
The three effective factors in the absorption of nanoparticles 
from the skin are the physicochemical properties of 
nanoparticles, the physicochemical properties of the tool 
dispersing the penetrating molecule, and the location and 
skin conditions. Cosmetic cream, lotion and toothpaste 
are nanoparticle-based tools that are often used in skin 
exposure. Nanoparticles usually accumulate in the stratum 
corneum and dermis [63,64]. It is also stated that some of 
the nanoparticles absorbed from the skin can leak into the 
bloodstream.
6.3. Ingestion
Nanoparticles are effectively absorbed from the 
gastrointestinal tract directly or through secondary 
ingestion of inhaled particles. It is important to note 
that nanoparticles with a high probability of accidental 
ingestion such as metal compounds and pesticides. This can 
often be ignored, as it is thought to occur only deliberately 
or because of gross negligence. Also, poor absorption of 
nanoparticles from the intestines and metabolism in the 
liver contributes to this situation [65,66].

7. Medical use of nanoparticles
As a relatively new subdivision of medical sciences, 
nanomedicine takes place among rising disciplines in 
parallel to the nanotechnological developments. Thanks to 
the potential of modification of nanoparticle characteristics 
nanoparticles have a wide range of applications. Therefore, 
a number of nanoparticles are currently utilized or being 
studied in certain medical areas such as treatment of 
diseases or malignancies, surgery, medical implants, 
smart drug delivery systems, gene delivery, diagnosis/
imaging, tissue engineering, regenerative medicine, and 
antimicrobial resistance and etc. 
7.1. Cancer diagnosis and treatment  
The use of nanoparticles in cancer diagnosis, imaging 
in particular, and treatment increase everyday. In order 
to reveal tumor sites more accurately quantum dots are 
utilized with magnetic resonance imaging. On the other 
hand, cancer biomarkers can be sensed by nanoparticle 
based test chips such as lab on a chip for noninterventional 
cancer diagnosis at the earliest stage [67].

Carbon nanotubes are used for revealing mutations 
in DNA and detection of biomarkers. Dendrimers 
and nanoparticles can be utilized as contrast agents 
for imaging, and in mechanisms of smart (targeted or 
controlled release) drug delivery [68].

Lantanide (Gd3+  and Yb3+) functionalized gold 
nanoparticles were used in vivo for both imaging (MRI 
and CT) and for therapeutic (photothermal) purposes. 
Additionally, ion-doped nanomaterials are used in bio-
imaging medical area [69].

7.2. Gene therapy
As a widely studied area gene therapy is dedicated to 
prevention and treatment of genetic disorders by correction 
of defective genes. This can be performed through delivery 
or replacement of the repaired or correct gene by several 
methods. This approach has potential use certain types of 
cancers, infections, cardiovascular diseases, autoimmune 
diseases, and monogenic diseases such as hemophilia.
7.3. Treatment of neural degeneration 
As in other treatment strategies, treatment of degenerative 
diseases or posttraumatic pathologies focuses on 
regeneration and protection of neural tissue, and guided 
axon growth. Therefore, nanomedical applications 
are promising in terms of treatment of Parkinson’s, 
Alzheimer’s diseases, and regeneration of axonal damage. 
Use of nanoparticles showing high affinity for circulating 
amyloid-β  (Aβ) subtypes potentially suppress symptoms 
of Alzheimer’s disease [70]. 
7.4. Tissue engineering 
This is a commonly known topic by professionals of 
regenerative medicine, nanomedical and biomedical 
engineers. It has applications regarding repair or reproduce 
damaged tissues by various forms and compositions of 
biocompatible, biodegradable nanomaterial-based bio-
scaffolds with minimum side effects.
7.5. Antimicrobial activity
A number of metallic nanoparticles are known to show 
antimicrobial activity, which can be used in combination 
of medications to reduce antibiotic resistance, as well. 
Gold, silver, zinc oxide, and etc. nanoparticles take place 
among such agents. These nanoparticles are also utilized 
to produce a number of surgical or implantable devices to 
the body [71].
7.6. Orthopedic implants
A number of implants such as bone tissue engineering 
materials, nanostructured implantable materials, and 
those produced by surface modification or coating are 
applied in orthopedic surgeries. Synthetic and natural 
polymers take place among common nanomaterials 
used for tissue engineering of bone/cartilage. These 
are collagen, hyaluronic acid, chitosan, titanium alloys, 
ceramic-coated metal-oxides (such as alumina, zirconia 
and titania), hydroxyapatites, and carbon nanomaterials 
such as graphene or diamond [72].

In order to achieve bioactivity, better mechanical 
properties and higher osteo-conductivity for faster and 
more efficient healing process, carbon nanocomposites 
containing ceramic or polymer matrix are used [73].
7.7. Dental application
Nanomaterials applied in dentistry are mostly 
antimicrobial, therapeutic and reinforcemental 
materials. They also used for polishing the enamel surface, 
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in dental fillings and in dental implants. Composites are 
carbon nanotubes, graphene, hydroxyapatite, iron oxide 
Zirconia, silica-based nanomaterials, titanium and silver 
nanoparticles [74,75].
7.8. Cardiovascular applications
Natural and synthetic nanomaterials are also used in heart 
tissue bioengineering. For biocompatibility, alginate and 
collagen are frequently used, while synthetic polyesters 
such as poly-L-lactic and poly (lactic co-glycolic) acids are 
commonly used. In addition, carbon nanotubes are used 
for coating stents and coronary implants [76].
7.9. Dermal applications
Skin implants that enhance tissue repair process are 
frequently used in wound healing. Although this frequency 
varies according to the clinical need, it consists mostly of 
poly (lactic-co-glycolic acid)/chitin markers that mimic 
human keratinocytes and fibroblasts as autologous skin 
grafts [77].

8. Toxic effects of nanoparticles on systems
Since nanoparticles enter the body in three main ways, it is 
known by experimental studies that it causes toxic effects 
in different systems. This section describes the toxic effects 
of nanomaterials on systems mostly by experiments on 
animals.
8.1. Circulatory system
Nemmar et al. detected cardiac oxidative stress and DNA 
damage in a study of intravenous administration of iron 
oxide nanoparticles in mice [78]. Magaye et al. reported 
a cardiac toxicity-arrhythmia in the study of intravenous 
administration of Ni nanoparticles in rats and observed 
toxic effects in organs such as liver, spleen and lung [79]
8.2. Digestive system
Arefian et al. reported that 100 ppm zirconia oxide 
nanoparticles cause damage to the liver in rats [80]. Also, 
iron oxide nanoparticles cause liver toxicity in mice [81].
8.3. Endocrine system
Yousefi et al. reported that oral form iron oxide 
nanoparticles cause irregularities in thyroid hormones in 
rats [82].
8.4. Immune system
Xu et al. reported that Ti02 nanoparticles in mice caused 
a serious increase in the number of white blood cells [83]. 
Besides, iron oxide nanoparticles cause an increase in the 
number of white blood cells, and the liver and spleen are 
the most affected organs immunologically [84]. 
8.5. Respiratory system
Cai et al. reported that metal nanoparticles (Cobalt oxide, 
nickel oxide, titanium oxide) applied by oropharyngeal 
aspiration cause toxicity in the lungs [85]. Similarly, 
Sadeghi et al. determined that iron oxide nanoparticles 
cause lung toxicity in rats [86].

8.6. Urinary system
Saranya et al. stated that zinc oxide, iron oxide and copper 
nanoparticles cause toxic effects on kidney cells in several 
monkeys, pig and bovine [87]. Besides, Fartkhooni et al. 
reported that TiO2 nanoparticles injected intraperitoneally 
cause degeneration in rat kidneys [88].
8.7. Nervous system
Studies were carried out on animal ears and eyes related 
to vision and hearing toxicity, and minimal toxicity was 
detected or no toxicity was detected generally [89,90].
8.8. Reproductive system
Mozaffari et al. determined that zinc oxide nanoparticles 
injected intraperitoneally in mice caused a decrease and 
loss in seminiferous tubule cells [91]. Besides, Kong et al. 
stated that nickel nanoparticles cause a decrease in FSH 
and LH hormone levels and changes in sperm motility in 
rats [92].

9. Toxicity mechanisms of nanoparticles
Mechanical effects due to the physicochemical properties 
of nanoparticles cause toxicity. The basic mechanism of 
toxic effect formation is reactive oxygen species (ROS) 
formation, either directly or indirectly. ROS formation 
is toxic in vitro by multiple mechanisms in the cell [93]. 
ATP synthesis in mitochondria occurs as a result of the 
reduction of molecular oxygen to water. During this event 
superoxide anions and radicals containing different oxygen 
are formed. ROS formed are known as hydroxyl radical, 
single oxygen, hydrogen peroxide and superoxide anion 
radicals [94]. Overproduction of these radicals, which 
play a role in mitogenic response and cellular signaling 
and leads to disruption of physiological functions in cells 
[95,96]. The damage caused by nanomaterials to the cell is 
cytotoxic and genotoxic (Figure 5).  Since nanomaterials 
have small dimensions, they cause more ROS production 
due to their specific surface area and high surface reactivity 
[97]. 

It is revealed in studies in living tissues such as human 
erythrocytes and skin fibroblasts that different types of 
nanomaterials cause toxicity by ROS activation [98]. 
Kim et al. determined that nano-Ag causes oxidative 
stress and genotoxicity in cultured living tissue also Mei 
et al. determined that nano-Ag creates mutations by 
increasing ROS formation in mice [99,100]. Hsin et al. 
reported that nano-Ag caused cytotoxicity by activating 
ROS in the mitochondrial pathway [101]. Akhtar et 
al. reported that silica nanoparticles cause cytotoxicity 
in the cell membrane and cause cytotoxicity in mouse 
embryonic fibroblasts through the production of ROS 
and lipid peroxidation of nano-CuO [102,103]. Girgis et 
al. proposed that nano-Au caused toxicity by causing an 
increase in oxidative stress in mice [104]. Shvedova et 
al. reported that single-walled CNTs cause cytotoxicity 
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in keratinocytes and bronchial epithelial cells leading to 
ROS production and mitochondrial dysfunction [105]. 
Winnik and Maysinger determined that quantum dots 
cause cytotoxicity by increasing ROS production [106]. It 
is reported that cytotoxic effect of  nano-ZnO in human 
bronchial epithelial cells by increasing ROS production 
[107]. Nano-FeO was reported to have a cytotoxic effect by 
increasing ROS formation and apoptosis, also comparing 
the cytotoxic effects of nano- Ti02, Co3O4, ZnO and CuO 
in hepatocyte cells, it was found that the most cytotoxic 
effect was in nano-CuO [108,109]. 

Other factors contribute to the toxicity of nanomaterials, 
such as surface area, surface coating, molecular size, shape, 
oxidation status, solubility and degree of aggregation and 
agglomeration [110]. It is determined that increasing the 
toxic effect of nanoparticles is directly proportional to the 
decrease in size. Yoshida et al. reported that amorphous 
nanosilica causes toxicity in the human cell, both by 
increasing ROS formation and by damaging DNA [111,112]. 
Besides, only in the evaluation based on its size, the smaller 
the nanoparticles, the more toxic it is to the organs [113]. 
Studies were reported that wire-shaped nanomaterials cause 
DNA damage and toxic effects through ROS production 
[114]. Studies were carried out on the effect of the shape of 
nanomaterials on toxicity, it was reported that the difference 
in shape does not make a critical difference in the toxic effect 
of nano Au in human skin keratinocyte cells [115]. On the 
contrary, a study on nano-ZnO crystals, it was reported 
that the hexagonal crystals have a more toxic effect than the 
rod-shaped ones [116]. Biocompatibility and nanoparticle 
contact area are directly proportional. A study was carried 

out in zebrafish embryos by Ispas et al. observed that 
dendritic ones were more toxic than spherical ones [117]. 
One of the nanomaterials commonly used in drug delivery 
systems is silica. Nanosilica causes different toxic effects in 
different pore volumes [118]. Oh et al. reported that the 
toxicity of the cationic charged nanosilica-titania particles 
is high [119]. Studies were carried out about size, shape 
and the relationship of surface parts of quantum dots with 
nanotoxicity [106,120]. In toxicity studies on fullerenes, the 
groups bound to the surfaces of these nanomaterials have a 
determining role in the effect of toxicity. Since it was stated 
that fullerenes cause cytotoxicity by producing free oxygen 
radicals, there are also fullerenes with antioxidant activity 
by adding malonyl groups to their surface [110]. Studies 
on the effect of nanomaterial solubility on toxicity were 
conducted. Studer et al. reported that ZnO nanoparticles 
have a less toxic effect than soluble copper metal [120]. 
Shen et al. determined that the dissolution of nano-ZnO 
cells is effective in the important emergence of the cytotoxic 
effect [121]. Mahto et al. reported that quantum dots 
dissolve in water, increasing ROS production and causing 
cytotoxicity [122]. UV and visible light have affected the 
stabilization of nano-TiO2 and nano-ZnO materials. 
In this way, photoexcitation through electrons causes 
toxicity [123]. Studies were carried out on graphene and 
aggregation toxicity used in many biomedical fields such 
as drug delivery systems, biosensors and labeling [124]. 
Also, Kim et al. noted the importance of agglomeration and 
aggregation in nano-Ag induced toxicity [99]. 

It continues to be researched in different organisms 
such as rodents, humans and plants in toxicity studies. 

Figure 5. ROS and nanomaterial toxicity



1189

AKÇAN et al. / Turk J Med Sci

Multiple areas differ according to the type of nanomaterial 
carbon and metallic nanomaterials are frequently 
used in the engineering area. Besides, the use of metal 
nanomaterials in cosmetics, medicine and food is also a 
common area.[125]. Sun creams and lotions containing 
nanotitanium and nanozinc show toxic effects on the skin 
and the environment depending on the frequency of use 
[126]. It is shown by the researchers that nanocopper oxide 
is effective in cytotoxicity and DNA damage, also carbon 
nanotubes have a toxic effect on cells [127,128]. 

10. Toxicity testing
In vitro experiments are performed more frequently 
than in vivo experiments, and questions about dosing are 
important in determining toxicity. One of the models used 
in the toxicity test is in vitro sedimentation diffusion and 
dosimeter. This model lies in the clear distinction between 
exposure (concentration in the cell environment), the 
dose accumulated on the cell surface and the cellular dose. 
Information about the time to release a given dose allows us 
to evaluate the dose rate as a determinant of response [129]. 

Since in vitro methods that determine cell viability and 
proliferation are frequently used in determining toxicity, 
methods such as gene expression analysis, genotoxicity 
detection and in vitro hemolysis are also used. Additionally, 
there are microscopic and spectroscopic methods for 
the evaluation of physicochemical structure in the cell 
such as scanning electron microscopy/energy dispersive 

X-ray spectroscopy (SEM-EDX), transmission electron 
microscopy (TEM), atomic force microscopy (AFM), 
video-enhanced differential interference contrast (VEDIC) 
microscopy and fluorescence spectroscopy. The combined 
use of all these tests makes it easier to detect nanotoxicity 
[130]. A concise list to summarize previously conducted 
studies regarding currently used toxicity tests, the purpose 
of the tests, and the target nanomaterials is presented in 
Table [131–147].

Exposure to nanoparticles through the respiratory tract 
often causes adverse effects on the lung. There are many 
studies on determining the detection of lung toxicity, and 
organ-on-a-chip studies have been important in recent 
years. Zhang et al. evaluated nanotoxicity by better imitating 
human responses with the chip in a 3D human lung model 
similar to in vivo. Also, this study showed the importance of 
organ-based toxicity with realistic models [148]. Studies in 
mouse placenta determined that nanoparticles pass through 
the placenta and show a toxic effect. Yin et al. reported that 
chip and TiO2 nanoparticle exposure-related studies in the 
3D human placenta model might have similar toxic effects 
[149]. Besides, nanotoxicity studies were carried out with 
the integration of a cell-on-a-chip (CoC) with a microfluidic 
system [150]. 

11. Concerns, future aspects and concluding remarks
Studies utilizing nanotechnology have been continuing 
rapidly in the last twenty years, which boosts related 

Table. A summary of literature related toxicity tests of nanomaterials [131-147].

Toxicity test Purpose Nanomaterials

Transmission electron microscopy Determination of intracellular localization TiO2, silver,fullerene [131–133]

Light microscopy Physicochemical properties Singled walled carbon nanotubes, silver 
[132,134]

Hemoglobin estimation Hemolysis SiO2 [135]
Micronucleus test Genotoxicity Different types of nanoparticles [136]
Commet assay test DNA damage Metal, metal oxide nanoparticles [137]
Lactate dehydrogenase

Cell viability

Carbon nanoparticles [138,139]
Tetrazolium salts Carbon nanoparticles, fullerenes [140,141]
Alamar Blue Quantum dots [142]
Propidium iodide Carbon nanoparticles [143,144]
Neutral red assay test Carbon nanotubes [140,145]
Caspase-3 activity 

Apoptosis
Silver nanoparticles [132]

Acridine orange/ethidium bromide Silver nanoparticles [146]
ROS production

Oxidative stress

TiO2 [131]

Levels of glutathione peroxidase, catalase, 
superoxide dismutase Polymeric nanoparticles [147]

Lipid peroxidation, vitamin E Singled walled carbon nanotubes [105]
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investment, industrial activities, marketing, and economic 
planning. This results in increase of number of related good 
and bad actors in the area. Each actor takes the heed of different 
priorities that might be controversial to others. Medical 
professionals considers biocompatibility, biodegradability 
and effectiveness of nanomaterials as priority, while 
professionals interested in industrial activities, marketing, 
and economic issues may prioritize scaling up production 
of new devices or nanomaterials, and decreasing costs and 
timescales. This inconsistency also raises questions about 
nanomaterials’ potential adverse effects. Since most authors 
state that “the only valid technology will be nanotechnology 
in the next era”, there is no consensus on the impact of this 
technology on humankind, environment and ecological 
balance. Following increasing regulatory demands 
regarding use of nanomaterial-based medical devices and 
advanced therapeutic medicinal products; governments 
have installed certain institutional projects. Out of projects 
investigating nanomaterials’ safety, the National Cancer 
Institute in United States points out that “most engineered 
nanoparticles are far less toxic than household cleaning 
products, insecticides used on family pets, and personal 
care products”. Similarly, European Union installed 
BIORIMA (BIOmaterial Risk MAnagement) project that 
aims developing an integrated risk management framework 
for the safe handling of nano-biomaterials used in  medical 
applications, and to assess and manage certain factors 
potentially arising from manufacturing and use of such 
materials.

Studies dealing with the toxic effect of nanomaterials on 
human health have also varied with developing technology. 
Nanotoxicology studies such as in vivo-like on 3D human 
organs, cells also advanced genetic studies are beginning to 
replace conventional in vitro analytical methods [151,152]. 
In vitro testing methods might require assessment of 
multiple challenging steps such as physicochemical 
properties of nanomaterials, the environment-target cell, 

cellular uptake and epigenetic interaction [153]. Omic 
approaches; next generation sequencing, transcriptomics 
and proteomics, have provided considerably more 
information regarding the toxicity of the complex cellular 
processes triggered by interaction of nanomaterials with the 
microenvironment [154,155]. Also, an important point is  
personalized toxicology. Possible genetic susceptibility to 
toxicity of nanomaterials should also be carefully studied 
under this topic [156]. The analysis of data obtained through 
novel technological developments and nanotoxicological 
studies is getting more and more difficult. In respect of 
above discussed issues, extraordinary increase of use of 
nanomaterial-based medical agents and devices come up 
with a challenge for future medicine. Nanotoxicity and 
adverse effects of nanomaterials in exposed producers, 
industry workers, and patients make nanomaterials a 
double-edged sword for future medicine. In order to 
control and tackle related risks, regulation and legislations 
should be implemented, and researchers have to conduct 
joint multidisciplinary studies in various fields of medical 
sciences, nanotechnology, nanomedicine, and biomedical 
engineering.
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